
Supplementary Material for ViT-WSS3D

Table 1. The results on the Waymo dataset.

Method Vehicle Ped. Cyc.

100% Full label 67.8 67.6 56.0
10% Full label 58.1 53.2 19.8

10% F + 90% W (ours) 67.2 67.5 54.2

1. Overview
The supplementary material provides some more specific

information as follows:

• More implementation details, including dataset param-
eters, data augmentation, training configuration.

• More quantitative and qualitative results.

2. More implementation details
In this section, we will describe the extra settings of our

method on KITTI [1] and SUN RGB-D [7] datasets. Note
that all these settings are only for the teacher, and we do not
change any setting of students.

KITTI. Following the previous methods [6, 2, 9], we
filter the points outside the point cloud range, which is set
as x ∈ [0, 70.4], y ∈ [−40, 40], z ∈ [−3, 1]. We let the
detection head regress the object dimension by predicting
the residual w.r.t. the average dimension of each class in the
whole training split, where the average dimension is dx =
3.9, dy = 1.6, dz = 1.56 for Car, dx = 0.8, dy = 0.6, dz =
1.73 for Pedestrian, and dx = 1.76, dy = 0.6, dz = 1.73
for Cyclist.

We leverage some commonly used data augmentations
to learn a more powerful teacher. In order to increase the
diversity of samples, we use the GT-Sampling [9] to com-
plement the ground truths in each scene, where we sam-
ple 15, 8, and 8 samples for Car, Pedestrian, and Cyclist in
each scene, respectively. Moreover, we use the global rota-
tion and scale transformation with rotation range as [−π

4 ,
π
4 ]

and scale ratio range as [0.95, 1.05]. We also use the random
local rotation and translation with translation standard devi-
ation as stdx = 1.0, stdy = 1.0, stdz = 0.5 and rotation
range as [−π

4 ,
π
4 ]. We sample points to form a fixed number

(i.e., 16384) input points and shuffle the points randomly to
force the teacher invariant to input permutation [5].

For training the teacher, we use the AdamW [3] opti-
mizer with β1 = 0.95, β2 = 0.85. We adopt the one-cycle
learning rate and momentum schedule with max learning
rate 0.0001, weight decay 0.01, and momentum 0.85 to
0.95. We train the teacher for 80 epochs with batches per
GPU as 4.

SUN RGB-D. Following [8] and because the scale of the
indoor scene is not as large as the outdoor scene, we do not
filter points. Additionally, due to the high diversity of in-
door objects, we do not use the average object dimensions,
instead, we directly predict the 3D dimensions of objects.

For data augmentations, we first randomly flip the scenes
horizontally with probability 0.5, then apply the global ro-
tation and scale transformation with rotation range [−π
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π
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and scale ratio range as [0.85, 1.15]. Finally, we sample
20000 points from the original point cloud for acceleration.

When training the teacher, we adopt the AdamW opti-
mizer with β1 = 0.9, β2 = 0.999. We use the step learn-
ing rate schedule with max learning rate 0.0001, weight de-
cay 0.0005, and we reduce the learning rate by 10× at the
24 and 32 epoch. We train the teacher for 36 epochs with
batches per GPU as 4.

3. Additional results
3.1. Results on Waymo

We report the performance (L1 mAP, PointPillars as the
student) on the large-scale dataset, Waymo. Note that we
choose the original 20% data as the 100% set, due to the
limited computation resource. As shown in Tab. 1, com-
pared with 100% full labels, our method reports similar per-
formance while significantly reducing the annotation cost.

3.2. Quantative results

For a closer look at the differences between
3DIoUMatch [8] and our method, we pose the stu-
dents performance for each category, shown in Tab.
2.

We find that under any data setting and any category, our
method always guides the student to achieve significantly
higher mAP, especially on those categories that cannot be
well predicted by the original student (e.g., Dresser and
Bookshelf). In stark contrast, 3DIoUMatch performs worse
than ours on these categories, sometimes hardly helping or



Table 2. The comparison results of 3DIoUMatch and our method on SUN RGB-D val split. We take the VoteNet as the student and report
mAP@0.25.

Method Setting Bed Table Sofa Chair Toilet Desk Dresser Night stand Bookshelf Bathtub Overall

VoteNet [4] 100% Full 84.5 49.6 68.3 78.0 90.2 25.3 29.2 62.3 35.4 75.1 59.8

VoteNet [4] 5% Full 74.0 32.6 43.6 59.6 66.3 9.1 2.0 38.1 2.2 37.8 36.5
3DIoUMatch [8] 5% Semi 77.9 37.1 41.6 61.7 77.3 6.2 1.6 36.1 0.4 59.6 40.0

Ours 5% Full + 95% Weak 82.8 42.7 59.6 73.8 71.5 22.0 25.0 57.7 12.2 76.4 52.4

VoteNet [4] 10% Full 77.1 35.4 48.2 63.0 73.5 9.3 7.4 45.0 3.1 45.4 40.7
3DIoUMatch [8] 10% Semi 80.1 40.5 53.8 66.3 78.5 10.2 6.8 47.0 8.3 58.2 45.0

Ours 10% Full + 90% Weak 84.6 44.6 63.3 74.4 88.1 22.2 26.6 63.4 21.3 81.7 57.0

VoteNet [4] 20% Full 80.0 43.2 57.9 70.1 78.7 14.6 13.0 50.0 12.7 53.2 47.4
3DIoUMatch [8] 20% Semi 80.7 43.8 56.9 69.5 81.5 13.8 14.8 46.8 17.4 62.9 48.8

Ours 20% Full + 80% Weak 85.9 48.8 65.1 73.2 89.5 27.2 26.9 63.7 29.4 78.0 58.8
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Figure 1. The visualization of pseudo labels from different methods on KITTI with 2% full data. † means training detectors on fully-labeled
data and then use them to infer pseudo boxes.

even hindering the student. For example, under the 5% full
data setting, the student performs worse than the original
student on Desk, Dresser, and Bookshelf under its guidance.

We argue that this is due to the dependence between

the teacher and the student brought by the teacher-student
mutual learning framework, where the performance of stu-
dents can influence the performance of the teacher. Unlike
3DIoUMatch, our method makes the teacher independent
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Figure 2. The visualization of pseudo labels from different methods on SUN RGB-D with 5% full data. † means training detectors on
fully-labeled data and then use them to infer pseudo boxes.

of students, and the results have shown the transcendence
of our method all around.

3.3. Qualitive results

We further show some additional visualizations of
pseudo labels from different methods in Fig. 1 and Fig. 2.
We mark the obvious errors with circles and arrows. Our
method can generate pseudo labels almost identical to GTs,
while 3DIoUMatch generates many false positives and false
negatives. The visualization demonstrates the much better
quality of pseudo labels from our method and the superior-
ity of our method.
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