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We provide more experiment details in Section A (including datasets, implementation details and discussions), qualitative
results (including visualization of the denoised pseudo labels and qualitative comparisons) in Section B, theoretical insights
in Section C and social impacts and limitations in Section D.

A. Experiment Details and Discussions
A.1. Datasets

We evaluate the proposed BiMem over multiple datasets as listed below:
Black-box UDA for Semantic Segmentation: We study two domain adaptive semantic segmentation tasks GTA5 [18]
→ Cityscapes [7] and SYNTHIA [19] → Cityscapes. Cityscapes has 19 categories with pixel-wise annotations. GTA5 has
24, 966 synthetic images and shares 19 categories with Cityscapes. For SYNTHIA, we use ‘SYNTHIA-RAND-CITYSCAPES’
which contains 9, 400 synthetic images and shares 16 categories with Cityscapes. For the two tasks, we adopt the 2975 train-
ing images in Cityscapes as target domain and perform evaluation on the 500 validation images in Cityscapes.
Black-box UDA for Object Detection: We study two domain adaptive detection tasks Cityscapes [7] → Foggy Cityscapes [22]
and SYNTHIA [19] → Cityscapes [7]. Cityscapes has 2975 training images and 500 validation images, where the bounding
boxes are generated from pixel-wise instance annotations as in [6, 21]. Foggy Cityscapes is translated from Cityscapes by
adding simulated fog, which shares 8 instance categories with Cityscapes. For task Cityscapes → Foggy Cityscapes, we
adopt 2975 training images in Foggy Cityscapes as target domain and perform evaluation on the 500 validation images in
Foggy Cityscapes. For SYNTHIA, we use ‘SYNTHIA-RAND-CITYSCAPES’ which contains 9, 400 synthetic images and
shares 6 instance categories with Cityscapes. We adopt 2975 training images in Cityscapes as target domain and evaluate on
the 500 validation images in Cityscapes under task SYNTHIA → Cityscapes.
Black-box UDA for Image Classification: We study two UDA-based image classification tasks Office-Home [25] and
Office-31 [20]. Office-home consists of 12 adaptation tasks with 4 domains: Art, Clipart, Product and Real-World. Office-31
includes 6 adaptation tasks with 3 domains: Amazon, DSLR and Webcam. Office-Home has images of 65 classes from
Art (A), Clipart (C), Product (P) and Real-World (R) which consist of 2496, 4464, 4503 and 4450 images, respectively.
Following [36, 20], we study 12 adaptation tasks: A→C, A→P, A→R, C→A, C→P, C→R, P→A, P→C, P→R, R→A,
R→C and R→P. Office-31 has images of 31 classes from Amazon (A), Webcam (W) and DSLR (D) which have 2817, 795
and 498 images, respectively. Following [36, 20], we study 6 adaptation tasks: A→W, D→W, W→D, A→D, D→A, and
W→A.

A.2. Implementation Details

Semantic Segmentation: We adopt DeepLab-V2 [4] with ResNet-101 [11] (pretrained on ImageNet [8]) as the segmentation
network as in [24, 35]. We adopt SGD optimizer [1] with a momentum 0.9 and a weight decay 1e − 4. The initial learning
rate is 1e− 4 and decayed by a polynomial policy of power 0.9 [4].
Object Detection: We adopt deformable-DETR [34] with ResNet-50 [11] (pretrained on ImageNet [8]) as detection network
as in [2, 34]. We adopt SGD optimizer [1] with a momentum 0.9 and a weight decay 1e − 4. The initial learning rate is
2e− 4.
Image Classification: Following [15], we adopt ResNet-50 [11] (pretrained on ImageNet [8]) for the tasks Office-Home and
Office-31. We adopt SGD optimizer [1] with a momentum 0.9 and a weight decay 1e−3. The initial learning rates are 1e−3
and 1e− 2 for ResNet-50 feature extractor and classifier, respectively.



For all experiments, we set momentum coefficient γ at 0.999 and update coefficient γ′ in Eq.6 at 0.999. We set the size of
short-term memory M at 65536 as in [10] and the number of features N in every active selection at 256. For all experiments,
we warm up the target model with soft pseudo-labels predicted by the source model, and the category-wise centroids in
long-term memory are initialized by all predictions from the warm-up target model.

A.3. Discussions

A.3.1 Parameter Analysis

We study the update coefficient γ′ used in Eq.4 for long-term memory and the parameter N used in active selection for
short-term memory.
Update Coefficient γ′. The update coefficient γ′ in Eq. 4 (in the main text) controls the update speed of long-term memory,
e.g., the larger it is, the slower the long-term memory updates. We study how it affects the adaptation over task GTA5 →
Cityscapes. As shown in Table 1, BiMem yields robust performance when γ′ is large enough (from 0.99 to 0.9999) while its
performance starts to drop slightly when γ′ becomes too small. This shows that a large update coefficient with smooth and
slow update helps maintain stable long-term memorization with effective memorization calibration and superior adaptation
performance, whereas a too small update coefficient leads to fast update of the long-term memory and results in unstable
long-term memorization and less effective backward calibration.

Update Coefficient γ′

Method 0.5 0.9 0.99 0.999 0.9999

BiMem 46.2 47.4 47.9 48.2 48.1

Table 1: The update coefficient γ′ defined in Eq.4 affects domain adaptation. The experiments are conducted over semantic
segmentation task GTA5 → Cityscapes.

Number of Features N for Active Selection. The parameter N controls the number of features that are actively selected by
short-term memory from sensory memory in every training iteration. We study how parameter N affects the adaptation over
task GTA5 → Cityscapes. As shown in Table 2, the proposed BiMem is tolerant to the variation of parameter N where the
best performance is achieved when N is set at 256.

Number of Features N in Active Selection

Method 128 256 384 512 640

BiMem 47.9 48.2 48.1 47.8 48.0

Table 2: The number of features N used in the active selection design affects domain adaptation. The experiments are
conducted over semantic segmentation task GTA5 → Cityscapes.

A.3.2 Difference to Memory-based UDA Methods

Several recent studies [12, 26, 13] introduce memorization into network training by memorizing historical models [12] for
source-free UDA, and memorizing source and target features [26, 13] for conventional UDA. Different from [12, 26, 13]
that memorize source features/models for conventional or source-free UDA, BiMem focuses on black-box UDA and relies
on neither source models nor source data/features during adaptation. Specifically, BiMem constructs three types of memory
that interact with each other in a bi-directional manner, which memorizes and calibrates useful target information learnt
during black-box adaptation to make up for the absence of source data and models. Table 3 shows that BiMem clearly
outperforms [12, 26, 13], largely because they were not designed for black-box UDA and their designed memorization
mechanisms cannot well handle the absence of source data and models.

A.3.3 Difference to Noisy Label Learning

In this work, we leverage our constructed BiMem to denoise the source-predicted pseudo labels for black-box UDA, which
share similar ideas as in noisy label learning. Here we study the difference between black-box UDA and noisy label learning
by providing insights and experiments.



Methods MeGA [26] MemSAC [13] HCL [12] BiMem

mIoU 43.1 44.7 45.7 48.2

Table 3: Comparison with existing memory-based UDA methods [26, 13, 12] over GTA5 → Cityscapes semantic segmenta-
tion.

Learning from noisy labels is a critical task in deep learning due to the lack of high-quality labels in many real-world
data [23, 17, 30, 9, 29, 27, 3, 31, 14, 33]. In prior studies on learning with noisy labels, the correct labels are randomly
corrupted by a noise transition matrix that defines the probability of flipping correct labels to false labels [23, 17, 30, 9, 29].
Different from the label noise simulated by random corruptions in [29, 27, 3, 31, 14, 33] that is normally independent to
data distributions, the pseudo label noises in black-box UDA are caused by the ‘distribution gaps’ between source and target
domains, which is explicitly correlated to source-target distribution (e.g., data with different categories and styles generally
experience different noise degrees across domains).

To further investigate the difference between the label noises simulated by random corruptions and the pseudo label noises
caused by domain gaps, we experimentally compare BiMem with several noisy label learning methods [28, 5, 32] over
task GTA5 → Cityscapes. Experimental results in Table 4 show that BiMem outperforms [28, 5, 32] by large margins,
demonstrating that noisy label learning methods [28, 5, 32] cannot well handle the pseudo label noises in black-box UDA
that is caused by the ‘distribution gaps’ between source and target domains and quite different to the label noise simulated by
random corruptions.

Method SCE [28] INCV [5] AdaCorr [32] BiMem

mIoU 39.2 43.6 42.7 48.2

Table 4: Comparison with existing noisy label learning techniques [28, 5, 32] over semantic segmentation task GTA5 →
Cityscapes.

A.3.4 Effectiveness of Memory Consolidation in Long-term Memory

As described in Section Method in the main text, long-term memory consolidates the calibrated sensory and short-term
memories iteratively, the features stored in which tends to gradually move closer to the true feature centroid of each category
while the adaptation moves on. In this subsection, we provide quantitative results to support this claim. Specifically, we
measure the quality of long-term features by calculating the l1 distance between the true feature centroids (acquired by using
the category ground-truth) and the feature centroids stored in long-term memory (obtained by consolidating the calibrated
sensory and short-term memories iteratively). As shown in Fig. 1, by consolidating sensory memory, the long-term features
(i.e., the category-wise feature centroids) gradually move close to the true feature centroids as the adaptation moves on (or-
ange line), showing that our memory consolidation design enables the long-term memory to capture less-noisy representative
information. In addition, consolidating the hard features (from short-term memory) into long-term memory further pushes
the long-term features closer to the true feature centroids (blue line), showing that the hard features captured by short-term
memory help build more comprehensive long-term memorization as the hard features are generally rare.

A.3.5 Adaptation across Different Models

Black-box UDA is flexible and allows different target networks regardless of source networks as described in Section In-
troduction in the main text. We examine this property by evaluating BiMem over two flexible adaptation scenarios across
different model architectures or sizes (on GTA5 → Cityscapes). The first column of Table 5 shows the results of adaptation
across different model architectures, i.e., from SegFormer (MiT-B5) to DeepLab-v2 (ResNet-101). It can be seen that all
black-box UDA methods perform much better with the stronger source model SegFormer while BiMem achieves the best
performance of 52.6% in mIoU. The second column of Table 5 presents the results of adaptation from large model to light-
weight model i.e., DeepLab-v2 (ResNet-101) → DeepLab-v2 (ResNet-50). It shows that the light-weight target models still
achieve competitive performance as compared with the large target models in the last column, and BiMem achieves the best
performance of 46.5 % in mIoU.
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Figure 1: Effectiveness of memory consolidation in long-term Memory. ‘SM’ denotes consolidation of sensory memory and
‘SM + ST’ denotes consolidation of both sensory memory and short-term memory.

These results indicate that BiMem is scalable as it could bring further improvements by employing stronger source models
and allows to adapt towards light-weight models in specific scenarios such as edge computing.

Source Model SegFormer (MiT-B5) DeepLab-v2 (ResNet-101) DeepLab-v2 (ResNet-101)
↓ ↓ ↓ ↓

Target Model DeepLab-v2 (ResNet-101) DeepLab-v2 (ResNet-50) DeepLab-v2 (ResNet-101)

Source only 44.0 36.6 36.6

CBST [35] 46.9 38.9 40.3
SFDA [16] 48.2 41.2 43.3
DINE [15] 50.4 44.3 46.7

BiMem 52.6 46.5 48.2

Table 5: Black-box adaptation across different models.

A.3.6 Adaptation with Predictions from Multiple Source Domains

Black-box UDA is flexible and allows effective and efficient adaption from multiple source domains while raising little
concern in data privacy and introducing much less computation overhead as compared with traditional UDA and source-
free UDA. We examine this property by evaluating BiMem over multi-source adaptation scenario, i.e., GTA5 & SYNTHIA
→ Cityscapes. For each unlabeled target sample, we simply average the two category-wise probability vector predicted
by GTA5-trained model and SYNTHIA-trained model respectively to obtain its pseudo label. As shown in Table 6, all
black-box UDA methods perform much better when adapting with predictions from two sources, while BiMem achieves
the best performance clearly. This shows that the information from multiple source domains are complementary for domain
adaptation while black-box UDA enables effective usage of this property as black-box UDA introduces little computation
overhead when increasing the number of source domains. In another word, these results indicate that our proposed BiMem
is scalable and can be easily improved by fusing the information from additional source domains with a simple average
operation.

Source GTA5 & SYNTHIA GTA5 SYNTHIA
↓ ↓ ↓ ↓

Target Cityscapes Cityscapes Cityscapes

Source only 42.3 39.8 33.5

CBST [35] 46.8 44.2 36.8
SFDA [16] 49.2 47.4 38.8
DINE [15] 52.8 50.4 40.9

BiMem 54.7 52.3 42.2

Table 6: Black-box adaptation with the pseudo labels predicted from multiple source models. The results are evaluated over
16 categories shared by GTA5, SYNTHIA and Cityscapes.



A.3.7 Analysis of the ‘Forgetting’ Issue in Black-box UDA

As discussed in Sec.4.7 and Figure 3 in the main text, we examine the source of the ‘forgetting’ by splitting target training
data into two portions according to their initial pseudo labels and evaluate the model (trained using full training data) on
these two portions respectively, as shown in the Columns 1 and 2 (copied from the main manuscript) of Fig. 2. Here we
additionally provide the controlled experiment on target validation data. Similarly, we split the target validation data into two
subsets according to their initial pseudo labels (predicted by the black-box predictor). This produces target validation data
with correct initial pseudo labels (i.e., Xcorrect

t val ) and target validation data with incorrect initial pseudo labels (i.e., X incorrect
t val ),

where the splitting allows training models with full data but evaluating them over decomposed validation data. As shown
in Columns 3 and 4 of Fig 2, we can observe similar phenomenon as in Fig.3 in the main text. For vanilla self-training,
the mIoU of Xcorrect

t val increases stably in the left graph while the mIoU of X incorrect
t val increases at the early stage but decreases

gradually as shown in the right graph. This indicates that vanilla self-training learns useful information to generate correct
predictions for X incorrect

t val at the early training stage but tends to forget these information at a later training stage. Differently,
BiMem builds comprehensive and robust memorization that memorizes and calibrates useful and representative information
on the fly, leading to stabler black-box UDA without performance degradation and training collapse.

Figure 2: Performance of vanilla self-training and our BiMem on the decomposed target validation data (Columns 3 and 4),
i.e., target validation data with correct initial pseudo labels (Column 3) and target validation data with incorrect initial pseudo
labels (Column 3). Columns 1 and 2 (copied from the main manuscript) show the results on target training data.

Original Image ST LT ST & LT Ground Truth

Figure 3: Visualization of the denoised pseudo labels over task GTA → Cityscapes. ‘ST’ denotes short-term memory, ‘LT’
denotes long-term memory and ‘ST&LT’ denotes including both short-term memory and long-term memory.



B. Qualitative Results
B.1. Visual Illustrations of Pseudo Label Denoising with BiMem

As discussed in Section 4.6 in the main text, the experimental results in Rows 2-4 of Table 8 (in the main text) quantitatively
demonstrate that short-term memory and long-term memory are complementary for denoising source-predicted pseudo labels.
In this subsection, we provide the respective denoised pseudo labels to qualitatively illustrate this property. It can be observed
that the short-term memory largely improves the detection of small-scale objects (e.g., traffic light and pole) as shown in the
2nd column of Fig. 3, while the long-term memory mainly helps denoise large-scale objects (e.g., road and vegetation) as
shown in the 3rd column of Fig. 3. This shows that the short-term memory and the long-term memory capture different types
of information learnt during adaptation. In addition, we can observe that the combination of short-term memory and long-
term memory performs the best clearly as shown in the 4th column of Fig. 3, showing that the different types of information
captured by the short-term memory and the long-term memory respectively can work synergically and are complementary
for label denoising.

B.2. Qualitative Comparisons

We present qualitative illustrations and comparisons over tasks GTA5 → Cityscapes and SYNTHIA → Cityscapes. As
shown in Fig. 4, BiMem yields the best segmentation consistently which is well aligned with the quantitative results.

C. Theoretical Insights
BiMem can be modelled as a memory-calibrated classification maximum likelihood (CML) problem optimized via clas-

sification expectation maximization.
Proof: The objective of BiMem self-training is to find the parameters θG that maximizes the classification log-likelihood

function [37] of the observed target samples xt:

θ∗G = argmax
θG

∑
xt

C∑
c=1

y
(c)
t log p(c|xt; θG), (1)

where C stands for the number of categories, yt ∈ {0, 1}C for all t, and p(c|xt; θG) is the posterior probability.
Eq. 1 can be maximized by CEM. Compared with traditional expectation maximization that has an “expectation” step and

a “maximization” step, CEM has an additional “classification” step that assigns a label to each target sample with a maximal
posterior probability.

The CEM steps of our BiMem are illustrated as the following:
Expectation Step: Given the model parameters θG, estimate the posterior probability: p(c|xt; θG), for all xt.
Classification Step: Fix model parameters θG and find the pseudo label with memory-based calibration weight p̂ as

following:

ŷt = argmax
yt

C∑
c=1

y
(c)
t log p(c|xt; θG) p̂ (2)

Maximization Step: Now, we are ready to maximize the classification log-likelihood as follows:

max
θG

∑
xt

C∑
c=1

ŷ
(c)
t log p(c|xt; θG). (3)

Thus, the classification log-likelihood defined in Eq. 1 can be maximized by iterating the above three steps until conver-
gence.

D. Social Impacts and Limitations
This work explores a new transfer learning pipeline named black-box UDA, which has clear advantages in little data

privacy concerns and the flexibility of allowing different target networks regardless of the source-trained black-box models.
In another word, black-box UDA benefits the computer vision community by providing a new transfer learning solution that
raises little data privacy issue. On the other hand, the explored techniques in this work are still at an early stage and thus our
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Figure 4: Qualitative comparison of BiMem with the baseline model [4] and DINE [15] over two tasks including GTA5 →
Cityscapes as shown in rows 1-5 and SYNTHIA → Cityscapes as shown in rows 6-10. The proposed BiMem yields the best
segmentation over two adaptation tasks consistently.

proposed method can serve as an auxiliary tool in applications instead of the hard control system that could lead to harmful
consequences.
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