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In this Appendix, we first introduce additional details re-
ferred in the main manuscript which include

• Section A: the way of encoding the geometry con-
straints and its significance;

• Section B: additional introduction of the datasets and
implementation;

• Section C: the method of quantifying the uncertainty
of 3D mesh vertex prediction;

• Section D: implementation details of incorporating ad-
ditional annotations.

Then we provide additional experiment results including

• Section E: example minority images in training and
testing sets;

• Section F: additional qualitative evaluation;

• Section G: evaluation results of shape estimation;

• Section H: measuring the labeling noise presented in
existing MoCap data through the proposed generic
constraints.

A. Geometry Constraints

As illustrated in Figure 2b of the main manuscript, the
shoulders, neck, and spine joints are coplanar; the hips and
pelvis joints are collinear. Let Pi be the 3D position of
joint i and Pij = Pj −Pi be the bone vector, where i, j =
0, ..., 6 and i ̸= j. The geometry constraints can be imposed
via encouraging the angle between bone P64 and P65 to
be 180 degrees, and the angle between bone P02 and the
norm of plane P0,1,3 to be 90 degrees. The losses can be

formulated accordingly as

Lcoplanar =
|(P01 ×P03) ·P02|
∥P01 ×P03∥∥P02∥

, (1)

Lcollinear =
|P64 ×P65|
∥P64∥∥P65∥

, (2)

Lgeometry = Lcoplanar + λcolinearLcollinear. (3)

The geometry constraints are derived based on the
knowledge of human body structure. In Table 1 row 2, we
demonstrate that imposing the geometry constraints ensures
realistic upper body reconstruction (the reconstructed joints
becomes colinear and coplanar). Moreover, these geometry
characteristics can be exploited to solve the inherent depth
ambiguity in lifting 2D observation to its 3D configuration.
Specifically, let P1, P2, and P3 be the 3D position of three
collinear points in the camera coordinate system. Under
perspective projection, we have

λpi = KPi, (4)

where i = 1, 2, 3, K is the camera intrinsic matrix, and λ is
a scalar. For Equation 4, Pi can not be uniquely solved due
to the depth ambiguity (the 2D-3D correspondences provide
two equations but with three unknowns). However, when
the three points are collinear, two additional equations can
be introduced through

P1 −P2

∥P1 −P2∥
=

P1 −P3

∥P1 −P3∥
. (5)

Given the camera intrinsic parameters and the 3D distance
between the three points, unique values of P1, P2, and P3

can be solved. Similarly, the coplanarity can introduce ad-
ditional constraints for alleviating the depth ambiguity. As
we do not assume the camera information is given, further
study of the geometry constraints is not discussed here.

B. Datasets and Implementation Details
Datasets. H36M includes 5 subjects performing 15 daily
actions like Eating, Greeting, and et al, and it consists of a



Models
Constraint Satisfaction Reconstruction Error

Anatomy Biomechanics Physics MPE P-MPEBone Geometry Angle Angle-inter
LNLL 101.2 83.2/166.5 30.7/30.8 109.1 97 296.5 161.2
LNLL + Lgeometry 130.8 89.4/178.7 41.6/41.7 35.2 100 415.3 311.5
3DPW GT 21.0 89.8/178.6 4.1/4.1 6.6 2 - -

Table 1. Evaluation of the constraints satisfaction on the ground truth data and the usage of the geometry constraints. For quantify-
ing the constraint satisfaction, we compute the mean per bone length error (Bone, in mm), average angle induced by the coplanar/colinear
joints (Geometry, in degrees), mean per joint angle violations with/without considering the inter-joint dependency (Angle/Angle-inter, in
degrees), and percentage of data with penetration (Physics, in percents). The bone and geometry constraints are soft constraints, while the
biomechanic and physic constraints are hard constraints that should be strictly satisfied. The angle induced by the coplanar and coplinear
joints should approximate to 90 and 180 degrees, respectively.

total of 312,188 training images. MPI-3D includes 8 sub-
jects covering 8 typical action classes like Exercise, Sit-
ting, and et al., with a total of 96,620 valid training images.
COCO is a dataset widely used for segmentation and de-
tection tasks. LSP and LSP-Extended (10,482 images) and
MPII (14,806 images) are standard datasets for 2D pose es-
timation and involve more diverse poses than COCO.

Implementation. Our implementation uses Pytorch. The
model is trained using Pytorch’s Adam solver with a learn-
ing rate of 10−5 and weight decay 10−4. The training
is conducted on one 2080Ti GPU with batch size of 64.
The images from different datasets are fed into one mini-
batch with the following split: H36M (0.35), MPI-INF-
3DHP (0.1), COCO (0.35), MPII (0.1), and LSP and LSP-
Extended (0.1). During training, we observe that it is ef-
ficient to train the regression model by first encoding the
generic prior. We hence first train the regression model
on H36M [1] for ∼ 150K iterations and then continue
training on all the datasets for ∼ 500K iterations. Once
the initial model is trained, we quantify the uncertainty
of all the training samples and compute the correspond-
ing uncertainty-guided refinement weights. Based on the
computed weights, we further refine the initial model for
∼ 100K iterations and obtain the final model.

Regarding the hyperparameters, we use 10 for the key-
points reprojection loss, 500 for the body anatomy loss,
1000 for the the biomechanics loss, 1000 for physic loss,
and 1 for scaling the refinement weights. We also add regu-
larization on the trace of the predicted covariance matrix of
the 2D keypoint projection with a weight of 50. This term
encourages the model to converge to the position with small
2D projection error.

When calculating the model memory, we use Pytorch’s
model.parameters() and model.buffers() to
count all the parameters and buffers stored in a model.
When evaluating the model speed, we perform the model
inference on a computer with a Intel(R) Xeon(R) W-2135
CPU and one 2080Ti GPU.

C. Uncertainty Quantification for 3D Mesh
Vertex Prediction

Not limited to quantifying the uncertainty of 2D body
keypoint prediction, KNOWN can also quantify the epis-
temic uncertainty of the 3D vertex prediction. Specifically,
for 3D body mesh vertices M, its conditional probability
given 3D body model parameters Y follows Gaussian dis-
tribution:

p(M|Y) = N
(
µM(Y),ΣM(Y)

)
, (6)

where the mean of the Gaussian distributions are specified
by the body pose and shape parameters via the forward
kinematic process. We quantify the epistemic uncertainty
of the 3D vertex prediction as

Covp(Y|X;W)

[
Ep(M|Y)[M]

]︸ ︷︷ ︸
Epistemic uncertainty

= Covp(Y|X;W)

[
µM(Y)

]
.

(7)

Directly computing the right side of Equation 7 is difficult.
We approximate the value via sample covariance:

Covp(Y|X;W)

[
Ep(M|Y)[M]

]︸ ︷︷ ︸
Epistemic uncertainty

≈ Cov
[
{µs

M}Ss=1

]
, (8)

where {µs
M}Ss=1 is computed using the samples of Y.

For the visualization of the 3D vertex prediction un-
certainty in Figure 5 of the main manuscript, the vertex
color represents the epistemic uncertainty computed follow-
ing the method introduced above. The colors are obtained
from a standard color map after normalizing the scalar un-
certainty value of each vertex to a range from 0 to 1.

Compared to the uncertainty quantified on the 2D key-
point projections, the epistemic uncertainty quantified on
3D vertex prediction does not involve the projection pro-
cess. Future work can consider further distinguish these
two types of uncertainty to account for the uncertainty in
estimating the camera parameters.



Figure 1. Example minority images.

D. Utilizing Additional Annotations
Training of KNOWN can easily incorporate annotations

from different sources when they are available. Specifically,
additional annotations can be incorporated during model
finetuning via minimizing a corresponding reconstruction
error. We here discuss the usage of the paired 3D annota-
tions.

Paired 3D annotations indicate either 3D body joint posi-
tion annotation or 3D body model parameter annotation that
are paired with an image. Paired 3D annotations are hard
to obtain and they are typically collected indoors. For the
employed training datasets, H36M, MPI-3D, COCO, MPII,
and LSP and LSP-Extended, only H36M and MPI-3D in-
clude the 3D body joint position annotations. To incor-
porate these annotations, we formulate the following loss
functions:

Lpair3D = ∥P− P̂(µθ,µβ)∥22, (9)

where P̂(µθ,µβ) is the predicted 3D body joint position
computed based on the mean pose and shape estimates. The
overall training loss is then calculated as:

L =

N∑
i=1

wi(LNLL,i + Lpair3D) + Lgeneric,i. (10)

The overall training loss includes the uncertainty-guided re-
finement weights to effectively leverage the data from a spe-
cific domain based on their uncertainty.

LSP Parts
Acc. F1

HMR [2] 87.00 0.59
Ours 87.40 0.65

Table 2. Evaluation of body shape estimation. The accuracy
(Acc.) and F1 score (F1) are computed on six-part body segmen-
tation on LSP’s test set.

E. Example Minority Images

In Figure 1, we present example minority images from
different training datasets and the testing set of H36M (Pro-
tocol 2). The minorities are mainly the images with large
camera angle, severe occlusion, or extreme poses — situ-
ations that make their reconstruction particularly challeng-
ing. KNOWN successfuly improve model performance on
these challenging image via uncertainty-guided refinement.

F. Additional Qualitative Evaluation

In Figure 2, we present additional qualitative evaluation
on the majorities (small epistemic uncertainty) and minori-
ties (large epistemic uncertainty). The majorities in each
test set are the images with large data density. As shown,
the majorities typically posses simple poses and few occlu-
sion. The model performance with and without employing
the refinement are similar on the majorities. By contrast, the
minorities in each test set are the images with low data den-
sity and they always contain more challenging poses and
severe occlusion. Applying the uncertainty-guided refine-
ment loss shows significant improvements on the minori-
ties. Specifically, the figures at the last row of Figure 2 are
the evaluation on a minority image from LSP’s test set. The
left leg and the two arms of the person in the input image are
occluded or blurred with the backgrounds. As a result, our
model shows large epistemic uncertainty on these regions.
Moreover, utilizing the uncertainty-guided refinement im-
proves the model performance on these challenging cases,
such as the left arm aligns better with the image.

G. Additional Quantitative Evaluation on
Body Shape Estimation

We demonstrate KNOWN’s improved body shape esti-
mation performance via six-part body segmentation accu-
racy evaluated on the LSP test set, following the typical
evaluation protocol used by [2]. During evaluation, body
part segmetations are obtained by rendering the 3D predic-
tion on image using the predicted camera parameters. With-
out using any 3D information, KNOWN’s body part seg-
mentation retains accuracy of 87.40 and F1 score of 0.65,
which are better than HMR’s 87.40 and 0.59, respectively.



Figure 2. Qualitative evaluation on the majorities and minorities. The test images from top to bottom are from H36M (row 1), MPI-3D
(row 2), 3DPW (row 3-4), and LSP (row 5), respectively. The images from lift to right are the input image, data uncertainty (without
refinement), model uncertainty (without refinement), and 3D reconstruction results (without/with refinement), respectively.

H. Measuring Labeling Noise Presented in Ex-
isting MoCap Datasets

The proposed generic constraints can be used to mea-
sure the data noise due to violation of the physical con-
straints. Example noisy data occurred in existing datasets
is shown in Figure 3. In details, in Figure 3 (a), the SMPL
model annotation is consistent with the original image in
general, while the pose label of the left elbow shows in-
feasible bending. Specifically, for this data sample, α, β,
and γ at left elbow is -6.4, -24.2, and -18.2 degrees, re-
spectively. While the corresponding valid angle ranges are
(−180, 90), (−166, 0), and (0, 0). The rotation defined by
γ clearly violates the biomechanic constraint and leads to
an unrealistic configuration at the left elbow. Furthermore,
example violations of body physics are visualized in Fig-
ure 3(b). Similarly, the overall configuration given by the
label is consistent with the original image but has penetra-
tion between body parts, including the unrealistic contact
between body hand and torso. These violations of body
biomechanics and physics mainly stem from the label gen-
eration process, where the labels are generated by fitting to
only a set of sparse 3D markers [3, 4]. Although the an-
notations are generally aligned with the corresponding im-
age data, the violation of the hard generic body constraints

(a) Violation of body biomechanics 

(b) Violation of body physics 

axis 𝛼 axis 𝛽

axis 𝛾

Image Label Elbow rotation in each individual axis

Figure 3. Labeling noise presented in existing MoCap data. The
labels in existing MoCap datasets are generated via fitting a para-
metric body model to a set of sparse 3D markers, which can lead
to the violation of (a) body biomechanics; and (b) body physics
(the body parts with penetration are marked with red circles) con-
straints.



leads to unrealistic 3D configuration. We propose to im-
pose the generic body constraints to ensure more physically
plausible 3D reconstruction and avoid being affected by the
labeling noise.
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