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1. Supplementary Material
In the supplementary material, we first determine the

theoretical receptive fields that arise from applying Partial
Channel Shifting (PCS).

Then we apply Local Attribution Maps (LAMs) [6] to
investigate different shifting settings of PCS.

To further prove the generality of PCS, besides the rep-
resentative SR models that we analyze in the manuscripts,
i.e., DRRN [18], EDSR(S) [14] and EDSR(L) [14], we
also provide convergence comparisons for multiple state-
of-the-art convolutional SR models when enhanced by
PCS, ranging from lightweight to large-scale, including
RFDN [15], BSRN [13], VAPSR [25], OISR [7], SAN [4]
and NLSN [17]. We also visualize their Effective Receptive
Fields [16] (ERFs) and LAMs.

Finally, additional qualitative visual comparisons
demonstrate that PCS improves the reconstruction perfor-
mance of SR models. We also provide pseudo-code to
illustrate how to perform spatial-wise feature shifting.

2. Receptive Field with PCS
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Figure 1: The receptive field is plausibly extended through shifting
a part of channels. Left: The spatially aligned features provide a
regular 3 × 3 receptive field for 3 × 3 conv kernels; Right: The
conv kernels “see” a larger range via staggered feature maps.

In this section, we calculate the theoretical receptive field
with the enlargement of PCS, and the calculation of the re-
ceptive field follows the guidance of Arujo et al. [2].

A 2D convolution with a kernel size of 3 × 3 and stride
of 1 results in an initial receptive field of 3 × 3. By per-
forming this convolutional operation N times, the theo-
retical receptive field on the original feature expands to
(2N + 1)× (2N + 1).

*Corresponding author, email: zxlation@foxmail.com
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When considering a case of bi-directional shift as shown
in Fig. 1, when applying a bi-directional shift with |h| = 1
and |w| = 0, the receptive field increases to 3 × 5. Upon
applying this convolutional operation N times, the theo-
retical receptive field on the original feature expands to
(2N + 1)× (4N + 1).

Generally, for a 2D convolution with a kernel size of K×
K and stride of 1, when applying shifting operation on a
single spatial direction with |h| = P, |w| = 0 or |h| =
0, |w| = P (P ≤ K) and repeating N times the convolution
operation, the resulting receptive field will be (N ∗K−N+
1)× (N ∗K +N ∗ P −N + 1).

Furthermore, Table 1 displays the theoretical receptive
field sizes of different shift modes.
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Figure 2: The training curves of representative models when ap-
plying PCS, and the results are tested on Set5 [3] (SR×2).

3. Local Attribution Maps
We apply Local Attribution Maps (LAMs) [6] to investi-

gate the impact of different settings of PCS on the SR mod-
els.

As shown in Fig. 4, LAMs trace the involved range of
utilized information when EDSR(S) and EDSR(S, PCS) re-
construct the red target area on the butterfly of Set5 [3].
The LAM attribution indicates the activated pixels during
the process of reconstruction. The area of contribution is
the visualized projection from the LAM attribution to the



Table 1: The theoretical receptive field is calculated based on the convolution with the kernel size of K × K and stride of 1, repeating
convolution operation N times and shifting magnitude of P (P ≤ K).

Shift Mode Receptive Field

Non-shift (N ∗K −N + 1)× (N ∗K −N + 1)
Uni-directional (N ∗K −N + 1 +N ∗ P )× (N ∗K −N + 1)
Bi-directional (N ∗K −N + 1 + 2N ∗ P )× (N ∗K −N + 1)

Cross-directional (N ∗K −N + 1 +N ∗ P )× (N ∗K −N + 1 +N ∗ P )
Quad-directional (N ∗K −N + 1 + 2N ∗ P )× (N ∗K −N + 1 + 2N ∗ P )
Octa-directional (N ∗K −N + 1 + 2N ∗ P )× (N ∗K −N + 1 + 2N ∗ P )
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(a) PCS SRB
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(c) PCS VAB
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(d) PCS ResBlock
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(e) PCS ResBlock-v2

Figure 3: The combinations of PCS with different residual components. (a) PCS ResBlock is with EDSR [14], SAN [4], and NLSN [17].
(b) PCS SRB is with RFDN [15]. (c) PCS BSRB is with BSRN [13]. (d) PCS Pixel Attention is with VAPSR [25]. (e) PCS ResBlock-v2
is with OISR-LF [7] and OISR-RK3 [7].

target image, and the shade of the red color simultaneously
illustrates the proportion of the contribution on the spatial
information.

Fig. 4(a) illustrates how the origin EDSR(S) activates the
neighbor region in the target area. To further examine the
activation process, we explore EDSR(S, PCS) with different
shifting configurations, as shown in Fig. 4(b), Fig. 4(c), and
Fig. 4(d).

Therefore, it can be observed that: (1) The direction in
which the features shift has a direct impact on the activated
spatial information; (2) Greater shifted proportions and
larger shifting magnitudes promote activation of a wider
range of pixels. However, as we explain in Sec. 4.3, ex-
cessively large shifting magnitudes and shifted proportion
is probably detrimental to the spatial locality of the image,
leading to the degradation of performance on SR models.

4. Convergence comparisons

In order to verify the general applicability of PCS on
SISR models, we conduct additional experiments using
highly effective and representative models that are widely
used and extensively evaluated in the SR community.

Besides the representative models (DRRN [18],

EDSR [14]) that we analyze in the manuscript, we also
investigated the impact of PCS on recently developed
lightweight and large-scale state-of-the-art models, in-
cluding RFDN [15], BSRN [13], VAPSR [25], OISR [7],
SAN [4] and NLSN [17].

We integrate quad-directional shift with |hk| = |wk| =
2, k ∈ I, γ = 1/8 for all lightweight and middle-scale
models (except |hk| = |wk| = 1 for VAPSR [25]), and bi-
directional shift with |hk| = 2, |wk| = 0, k ∈ I, γ = 1/16
for all large-scale models. When designing the combina-
tion of PCS of each model, we follow our conclusion in
Sec. 4.3.4 that always embed PCS towards the front of the
Residual Connection, and the detailed implementations are
in Fig. 3. For a fair comparison, all models are trained
from scratch on DIV2K [1], The learning rate is set ac-
cording to their original settings [18, 15, 13, 25, 7, 4, 17],
and other training settings are consistent with Sec. 4.2 in
the manuscript. We show the training curves of lightweight
and middle-scale models of SR(×2,×4), and the large-scale
models of SR(×2).

As the subsequent experiments show that all the PCS-
enhanced models not only converge faster, but also have
no difficulty in obtaining higher performance. These re-
sults empirically verify the effectiveness that PCS endows
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(a) LAM of EDSR(S)
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(b) EDSR(S, PCS), γ = 1/16.
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(c) EDSR(S, PCS), γ = 1/8.
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(d) EDSR(S, PCS), γ = 1/2.

Figure 4: LAM results of different shifting settings. From left to right, uni-directional shift is with h = −1,−2,−3 and |w| = 0, bi-
directional shift is with h = 1, 2, 3 and |w| = 0, cross-directional shift is with h = −1,−2,−3 and w = −1,−2,−3, quad-directional
shift is with |h| = 1, 2, 3 and |w| = 1, 2, 3.

the models. PCS also showcases its outstanding plug-and-
play capability and versatility when interacting with various
state-of-the-art SR models.

4.1. Representative SISR Models

Fig. 2 illustrates the comparison of training curves be-
tween DRRN [18] and EDSR [14], as well as their PCS-
enhanced counterparts. While the PCS-enhanced models
exhibit better performance, it can be observed that as the
model size increases, the extent of performance improve-
ment provided by PCS diminishes. This phenomenon per-
sists in subsequent experiments as well.

4.2. Lightweight SISR Models

For lightweight models, RFDN [15] is proposed with
multiple feature distillation connections, which learns more
characteristic feature representations, and won the cham-
pion of AIM 2020 Efficient SR Challenge [22]. RFDN con-
tains 6 residual feature distillation blocks (RFDB), and in
each RFDB, the feature is sequentially extracted into two
branches composed of 1×1 convolutions and shallow resid-
ual blocks (SRB). We insert the PCS operation in the front
of the convolution of SRB as shown in Fig. 3a. The conver-
gence comparisons are in Fig. 5 and Fig. 8.

BSRN [13] adapted the residual feature distillation
connections with effective attention modules and re-



parameterized the redundant convolution by blueprint sep-
arable convolution (BSConv) of RFDN, and won the first
place in the model complexity track in NTIRE 2022 Effi-
cient SR Challenge [12]. As BSRN inherits the feature dis-
tillation topology of RFDN, the blueprint shallow residual
block (BSRB) is introduced by replacing the standard 3× 3
convolution of the RSB with BSConv. So we also insert the
PCS operation in the front of BSConv as shown in Fig. 3b.
The convergence comparisons are in Fig. 6 and Fig. 9.

Recently, VAPSR [25] is well-designed with pixel-
attention [24], and re-parameterizes further the convolu-
tions to a vast receptive field, which can achieve a simi-
lar performance of RFDN with only 28.18% parameters.
Instead of the topology of feature distillation connections,
VAPSR chose the residual architecture similar to VDSR [9],
and 21 vast-receptive-field attention blocks (VABs) are cas-
caded together. Both ends of VAB are stacked with 1 × 1
convolutions, and its backbone is enhanced with pixel atten-
tion. We insert the PCS operation in front of the first convo-
lution of VAB as shown in Fig. 3c. Considering the size of
the foremost convolution in VAB is smaller compared to the
3 × 3 convolution, we opt for a smaller shifting magnitude
as |hk| = |wk| = 1. The convergence comparisons are in
Fig. 7 and Fig. 10.

4.3. Large-scale SISR Models

For large-scale models, He et al. are inspired by nu-
merical analysis methods for ordinary differential equa-
tions to develop OISR [7], which subtly modifies the topo-
logical structure of the residual block in EDSR. The pro-
posed modifications result in improved performance for
EDSR, with a comparable number of parameters. OISR-
LF is the medium-scale version, whose architecture is in-
terpreted from the Leapfrog method, while OISR-RK3 is
a large-scale version corresponding to the 3-stage Runge-
Kutta method. In OISR, a residual block is formed by mul-
tiple residual blocks, we replace only the first residual block
with PCS ResBlock-v2 as shown in Fig. 3e. The conver-
gence comparisons of OISR-LF-based models are in Fig. 11
and Fig. 12, and the convergence comparisons of OISR-
RK3-based models are in Fig. 13.

Dai et al. learned from channel-attention [8, 23], non-
local [20] and matrix power normalized covariance [11],
and proposed SAN [4], which combines the second-order
channel attention and non-locally enhanced residual group
(NLRG) to enhance the performance of SISR. There are 10
residual blocks in each NLRG, and they are identical to the
residual blocks in EDSR [14]. We substitute all the residual
blocks in SAN with the PCS ResBlock to form SAN(PCS),
as shown in Fig. 3d. The convergence comparisons are in
Fig. 14.

Mei et al. proposed NLSN [17], a state-of-the-art con-
volutional SISR model, by combining non-local [20] and

sparse representation [21] with EDSR(L). Specifically, they
improved the embedded Gaussian form of non-local oper-
ation by drawing inspiration from Reformer [10], and in-
serted the non-local sparse attention block in EDSR(L) af-
ter every 8 residual blocks, leading to the development of
NLSN as one of the representative large-scale models at
present. As NLSN shares the same network topology with
EDSR, we also replace all the residual blocks with PCS
ResBlock. The convergence comparisons are in Fig. 15.

5. Visualization of ERFs
The ERFs [16] calculate the pixels that contribute to the

center of an output feature map in a neural network, thereby
assisting us in comprehending the effective receptive field
scale of each model. For SISR models, we randomly crop
200 patches of 64× 64 resolution from DIV2K [1] SR(×2)
as the input. Following [5, 19], we then calculated the score
for the center of the output feature map of the layer be-
fore the up-scaling module (e.g. pixel-shuffle layer), and
rescale the accumulated average output within a value be-
tween 0 and 1 for the whole to effective receptive fields. As
shown in Fig. 16, the brighter and more influential a region
is, the closer the value is to 1, while the darker the region,
the closer the value is to 0. The size of ERFs is compar-
atively smaller in lightweight models, whereas it is larger
in larger-scale models. Although the interactions between
PCS and different attention are relatively complex and ir-
regular, PCS is capable of expanding the receptive field of
all the state-of-the-art SISR models.

6. Visualization of LAMs
We then present Local Attribution Map (LAM) analysis

for both the non-PCS methods and PCS-enhanced methods
in Fig. 17. The target area under consideration is identical
to that in Fig. 4a. In lightweight models, the range of ac-
tivated neighboring pixels is narrow due to the relatively
small ERFs, while in large-scale models, PCS-enhanced
methods exhibit a higher density of involved pixels, imply-
ing that they are likely to explore more local spatial correla-
tion during reconstruction. Despite the improved represen-
tation capacity of PCS-enhanced models, as demonstrated
by the training curves, the combinations of PCS and differ-
ent attention mechanisms remain too complex and intricate
to analyze.

7. More Qualitative Results
This section provides more qualitative results in Fig. 18

and Fig. 19. Compared with the original models, PCS-
enhanced SR models significantly improve their represen-
tation abilities. Therefore, the integration of PCS into exist-
ing SR models is a promising approach to achieving higher-
quality image reconstruction.
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Figure 5: Convergence comparison between RFDN [15] and RFDN(PCS) on SR ×2.
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Figure 6: Convergence comparison between BSRN [13] and BSRN(PCS) on SR ×2.
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Figure 7: Convergence comparison between VAPSR [25] and VAPSR(PCS) on SR ×2.
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Figure 8: Convergence comparison between RFDN [13] and RFDN(PCS) on SR ×4.
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Figure 9: Convergence comparison between BSRN [13] and BSRN(PCS) on SR ×4.
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Figure 10: Convergence comparison between VAPSR [25] and VAPSR(PCS) on SR ×4.
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Figure 11: Convergence comparison between OISR-LF [7] and OISR-LF(PCS) on SR ×2..
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Figure 12: Convergence comparison between OISR-LF [7] and OISR-LF(PCS) on SR ×4..
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Figure 13: Convergence comparison between OISR-RK3 [7] and OISR-RK3(PCS) on SR ×2.
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Figure 14: Convergence comparison between SAN [4] and SAN(PCS) on SR ×2.
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Figure 15: Convergence comparison between NLSN [17] and NLSN(PCS) on SR ×2.
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Figure 16: ERFs [16] of non-PCS models and PCS-enhanced models.
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Figure 18: Qualitative comparisons between SR methods. The best and second best results are in red and blue respectively.
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Figure 19: Qualitative comparisons between SR methods. The best and second best results are in red and blue respectively.


