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1. More Experimental Details
1.1. Overlapped & disjoint setup

We provide a detailed explanation of the overlapped and
disjoint settings in this section. The overlapped setting al-
lows pixels in the samples from the sub-dataset Dt to belong
to any classes, including past classes from learning step 1 to
t− 1 (i.e., C1:t−1), current classes (Ct), and future classes.
However, only the classes in Ct are annotated in yt. More-
over, images that contain multiple classes may appear in
several learning steps with varying annotations. In contrast,
the disjoint setting studied in prior works, such as [1, 9, 10],
comprises a non-overlapping subset of datasets. Each learn-
ing step contains a unique Ct, and its pixels only belong to
classes seen in C1:t−1 or Ct. Notably, the overlapped setup
is more realistic as it imposes a weaker restriction on the
data than the disjoint setup.

1.2. Reproducibility

In all experiments, CoinSeg adopts the same mask pro-
posals and the number of proposals N = 100, according to

prior practice as in the class incremental semantic segmen-
tation (CISS) method MicroSeg [11]. We adopt the official
Pre-trained Model of Swin Transformer [7] for all
experimental results. In the case of CoinSeg-M, which is
CoinSeg equipped with a memory sampling strategy, we
implemented the strategy using the official code of the prior
CISS work SSUL [2]. To be more specific, the strategy is
based on random sampling from the training dataset, while
also ensuring that at least one sample of every seen class is
present in the memory bank.

2. Additional Experimental Analysis
2.1. Detailed experimental results of CoinSeg

Tab. S1 shows the detailed experimental results over each
class in the Pascal VOC 2012 [4] dataset.

2.2. CoinSeg with ResNet101 backbone

To further validate the effectiveness of our proposed ap-
proach and ensure a fair comparison with other methods from
a different perspective, we conducted additional experiments
with the CoinSeg method using ResNet101 as the backbone.
The results are presented in Tab. S2, From which we can see,
even with a relatively weaker backbone, the results indicate
that our approaches, including CoinSeg and CoinSeg-M, are
still competitive, and achieve state-of-the-art performance
across multiple incremental scenarios.

2.3. Experimental results of disjoint setting

To provide a thorough comparison with prior works on
CISS, we further present the experimental results of our
proposed methods, CoinSeg and CoinSeg-M, in the disjoint
setting in Tab. S3. We evaluate our methods using both the
ResNet101 and Swin-B backbones. The results show that
our methods achieve state-of-the-art performance, surpassing
prior works on CISS.

2.4. Ablation study of contrast intra-class diversity

As highlighted in the main paper, strategies aimed at con-
trasting intra-class diversity are critical for learning robust

https://github.com/SwinTransformer/storage/releases/tag/v1.0.0


Table S1. Detailed experimental results of CoinSeg over each class.

VOC 10-1

bg aero bike bird boat bottle bus car cat chair cow
88.0 89.9 40.8 94.1 76.3 88.5 91.1 89.7 96.2 48.4 77.2
table dog horse mbike person plant sheep sofa train TV mIoU
37.8 89.4 75.3 83.7 85.5 47.1 59.5 27.4 74.8 53.2 72.5

VOC 15-1

bg aero bike bird boat bottle bus car cat chair cow
90.3 89.8 43.5 95.2 79.3 88.0 91.2 90.8 96.3 47.1 78.1
table dog horse mbike person plant sheep sofa train TV mIoU
68.5 93.3 91.0 92.0 89.7 43.7 64.1 27.0 72.7 55.4 75.5

VOC 19-1

bg aero bike bird boat bottle bus car cat chair cow
93.9 91.8 43.0 94.5 76.4 87.2 95.0 89.6 96.5 49.1 91.5
table dog horse mbike person plant sheep sofa train TV mIoU
65.9 89.7 90.1 90.3 90.9 63.0 93.0 54.0 86.0 44.8 79.8

VOC 15-5

bg aero bike bird boat bottle bus car cat chair cow
91.3 90.9 43.8 95.4 74.5 85.2 90.0 91.3 95.2 49.1 79.5
table dog horse mbike person plant sheep sofa train TV mIoU
66.7 90.5 91.0 90.9 90.1 55.2 72.4 31.3 84.0 73.1 77.6

VOC 2-2

bg aero bike bird boat bottle bus car cat chair cow
89.1 85.4 35.8 53.2 56.9 76.7 88.5 80.3 88.0 18.3 64.4
table dog horse mbike person plant sheep sofa train TV mIoU
43.0 59.2 64.9 79.8 80.8 60.2 51.8 32.4 74.1 67.9 64.3

Table S2. Comparison with state-of-the-art methods on Pascal VOC 2012 with ResNet101. Joint is the upperbound.

Method Backbone VOC 10-1 (11 steps) VOC 15-1 (6 steps) VOC 19-1 (2 steps) VOC 15-5 (2 steps) VOC 2-2 (10 steps)
0-10 11-20 all 0-15 16-20 all 0-19 20 all 0-15 16-20 all 0-2 3-20 all

Joint ResNet101 82.1 79.6 80.9 82.7 75.0 80.9 81.0 79.1 80.9 82.7 75.0 80.9 76.5 81.6 80.9
LwF-MC [6] ResNet101 4.7 5.9 4.9 6.4 8.4 6.9 64.4 13.3 61.9 58.1 35.0 52.3 3.5 4.7 4.5
ILT [8] ResNet101 7.2 3.7 5.5 8.8 8.0 8.6 67.8 10.9 65.1 67.1 39.2 60.5 5.8 5.0 5.1
MiB [1] ResNet101 12.3 13.1 12.7 34.2 13.5 29.3 71.4 23.6 69.2 76.4 50.0 70.1 41.1 23.4 25.9
SDR [9] ResNet101 32.1 17.0 24.9 44.7 21.8 39.2 69.1 32.6 67.4 57.4 52.6 69.9 13.0 5.1 6.2
PLOP [3] ResNet101 44.0 15.5 30.5 65.1 21.1 54.6 75.4 37.4 73.5 75.7 51.7 70.1 24.1 11.9 13.7
RCIL [10] ResNet101 55.4 15.1 34.3 70.6 23.7 59.4 68.5 12.1 65.8 78.8 52.0 72.4 28.3 19.0 19.4
SSUL [2] ResNet101 71.3 46.0 59.3 77.3 36.6 67.6 77.7 29.7 75.4 77.8 50.1 71.2 62.4 42.5 45.3
SSUL-M[2] ResNet101 74.0 53.2 64.1 78.4 49.0 71.4 77.8 49.8 76.5 78.4 55.8 73.0 58.8 45.8 47.6
MicroSeg [11] ResNet101 72.6 48.7 61.2 80.1 36.8 69.8 78.8 14.0 75.7 80.4 52.8 73.8 61.4 40.6 43.5
MicroSeg-M [11] ResNet101 77.2 57.2 67.7 81.3 52.5 74.4 79.3 62.9 78.5 82.0 59.2 76.6 60.0 50.9 52.2

CoinSeg (Ours) ResNet101 73.7 45.0 60.1 80.6 36.2 70.1 80.7 29.4 78.3 80.8 31.0 68.9 68.3 46.2 49.4
CoinSeg-M (Ours) ResNet101 71.1 60.2 65.9 81.5 54.0 75.0 80.3 44.8 78.6 81.3 61.3 76.6 66.7 53.9 55.7

representations. In this regard, we provide quantitative evi-
dence to support this claim. Specifically, Tab. S5 reveals that
using Lint only yields a marginal improvement in perfor-
mance. This suggests that while assigning a representation
to each class via average pooling may be effective to some
extent, it is not the optimal strategy, and the improvement in
performance is limited. On the other hand, combining Lint

with Litr leads to a significant improvement in overall per-
formance. These findings indicate that contrastive learning
of intra-class diversity is an effective approach for robust
representation learning.

2.5. Ablation to pseudo-labeling strategy in Lint

As detailed in the main paper Sec. 3.2, we employ pseudo-
labeling within Lint to extract categories learned in previous
learning steps. To illustrate its impact, we report the perfor-
mance of Lint just with the current class labels in Tab. S4
Right (‘GT’ row). We can see that the proposed pseudo-
labeling (PL) boosts the performance.

2.6. Discussions of adaption of Swin Transformer

Our proposed contrast intra- and inter-class diversity rep-
resentation approach places a greater emphasis on local infor-
mation. In contrast to conventional CNN-based architectures,
the Swin Transformer offers superior feature representation



Table S3. Experimental results on Pascal VOC 2012 for disjoint setup. †: CoinSeg with Swin-B backbone.

Method VOC 15-1 (6 steps) VOC 19-1 (2 steps) VOC 15-5 (2 steps)
0-15 16-20 all 0-19 20 all 0-15 16-20 all

LwF-MC [6] 4.5 7.0 5.2 63.0 13.2 60.5 67.2 41.2 60.7
ILT [8] 3.7 5.7 4.2 69.1 16.4 66.4 63.2 39.5 57.3
MiB [1] 46.2 12.9 37.9 69.6 25.6 67.4 71.8 43.3 64.7
SDR [9] 59.4 14.3 48.7 70.8 31.4 68.9 74.6 44.1 67.3
PLOP [3] 57.9 13.7 46.5 75.4 38.9 73.6 71.0 42.8 64.3
RCIL [9] 66.1 18.2 54.7 68.9 15.0 66.3 75.0 42.8 67.3
SSUL [2] 74.0 32.2 64.0 77.4 22.4 74.8 76.4 45.6 69.1
SSUL-M [2] 76.5 43.4 68.6 77.6 43.9 76.0 76.5 48.6 69.8
MicroSeg [11] 73.7 24.1 61.9 80.6 16.0 77.4 77.4 43.4 69.3
MicroSeg-M [11] 80.0 47.6 72.3 81.1 45.1 79.4 80.7 55.2 74.7
CoinSeg (Ours) 75.6 30.9 64.9 80.5 25.1 77.9 79.6 43.8 71.1
CoinSeg-M (Ours) 80.9 47.4 72.9 80.8 50.6 79.4 81.7 58.9 76.3

CoinSeg† (Ours) 82.0 46.1 73.4 82.0 34.0 80.2 82.1 55.3 75.7
CoinSeg-M† (Ours) 82.0 49.6 74.3 82.6 66.3 81.8 82.9 61.7 77.9

Table S4. Ablations to pseudo-labeling in Lint. GT: ground truth,
PL: pseudo label.

label VOC 15-1 (6 steps)
0-15 16-20 all

GT 81.6 54.3 75.1
PL 82.7 52.5 75.5

Table S5. Ablation study of Contrast inter- & intra- class represen-
tations, λr . All experiments are conducted on VOC 15-1.

Method Lint Litr
VOC 15-1 (6 steps)

0-15 16-20 all

CoinSeg
✗ ✗ 80.4 43.7 71.6
✓ ✗ 80.8 45.9 72.4 (+0.8)
✓ ✓ 82.7 52.5 75.5 (+3.9)

capabilities for local patches [5, 7]. Hence, we choose the
Swin Transformer as the backbone of the model. Tab. S6
show the comparison of both backbones, ResNet101 and
Swin Transformer. The results show that CoinSeg achieves a
significant improvement in performance with the Swin Trans-
former, particularly in more challenging long-term scenarios
such as VOC 10-1 and 2-2.

Meanwhile, due to the freeze strategy, prior methods
may not be able to fully take advantage of the backbone’s
performance. As a result, the performance improvement of
prior methods is limited when replacing ResNet101 with
Swin Transformer as the backbone. This conclusion can be
drawn by comparing the experimental results presented in
the main paper. However, our proposed CoinSeg method
shows significant performance improvement when using
Swin Transformer as the backbone.

It is important to note that while applying the Swin Trans-
former results in improved performance, our approach does

not depend solely on a stronger backbone. As shown in
Tab. S2, CoinSeg achieves state-of-the-art performance even
when using the ResNet101 backbone.

2.7. Search of hyper-parameters

Here we present the results of the hyper-parameters
search, including λr, λc, λlr and τ . We have done the
parameter search on five orders of magnitude on VOC 15-
1, for λr λc and λlr. The results of Tab. S7 show λr, the
hyper-parameter to balance regularization constraints, is not
sensitive to the choice of these parameters. Even if the λr

varies by several orders of magnitude (10−3 to 1), the perfor-
mance is stable. The results show that our proposed method,
CoinSeg, is effective over a wide range of choices of hyper-
parameters. Tab. S8 presents the parameter search of λc,
the hyper-parameter weight of contrast inter- and intra-class
representations (Coin). And Tab. S9 is the performance
comparison with different choices of λlr in flexible initial
learning rate. Additionally, we also report the more detailed
experimental results in different incremental scenario (VOC
10-1) in Tab. S10. The results lead to similar conclusions.
Furthermore, we have done a parameter search for threshold
τ for pseudo-label in Tab. S11. The conclusions are still
similar.

Additionally, we also conduct a hyperparametric search
within a similar magnitude, as most previous works did, as
shown in Tab. S12. Our method shows a performance fluctu-
ation of only 0.4% in this perspective. This demonstrates the
robustness of our proposed CoinSeg with respect to hyperpa-
rameters. As a summary, we choose λr = 0.1, λc = 0.01,
λlr = 10−3 and τ = 0.7 for the best performance.



Table S6. Comparisons of CoinSeg with different backbones. †: Re-implemented with Swin-B backbone.

Method Backbone VOC 10-1 (11 steps) VOC 15-1 (6 steps) VOC 19-1 (2 steps) VOC 15-5 (2 steps) VOC 2-2 (10 steps)
0-10 11-20 all 0-15 16-20 all 0-19 20 all 0-15 16-20 all 0-2 3-20 all

CoinSeg Resnet101 73.7 45.0 60.1 80.6 36.2 70.1 80.7 29.4 78.3 80.8 31.0 68.9 68.3 46.2 49.4
CoinSeg† Swin-B 80.0 63.4 72.5 82.7 52.5 75.5 81.5 44.8 79.8 82.1 63.2 77.6 70.1 63.3 64.3

Table S7. Parameter search of hyper-parameter of regularization
constraints, λr . All experiments are conducted on VOC 15-1.

Method λr
VOC 15-1 (6 steps)
0-15 16-20 all

CoinSeg

10−3 80.9 53.3 74.3
0.01 81.9 52.6 74.9
0.1 82.7 52.5 75.5
1 81.7 50.6 74.3
10 80.8 50.4 73.5

Table S8. Parameter search of hyper-parameter to balance Coin,
λc. All experiments are conducted on VOC 15-1.

Method λc
VOC 15-1 (6 steps)
0-15 16-20 all

CoinSeg

10−3 81.4 48.9 73.7
0.01 82.7 52.5 75.5
0.1 82.4 51.8 75.1
1 81.8 49.9 74.2
10 80.6 46.6 72.5

2.8. Reproduction of past methods

In this paper, a portion of the experimental results are
obtained through reproducing previous methods, e.g., the
performance of previous methods equipped with the Swin-
B backbone. Note that we have made extensive efforts to
optimize the performance of previous methods on the Swin
transformer, to facilitate a fair comparison. Tab. S13 show
the parameter tuning the most crucial hyperparameter, K, in
previous method MicroSeg.

3. More Qualitative Results

In addition to the qualitative results shown in the main
paper, here in Fig. 1 shows more qualitative results of
ADE20K [12] dataset. We conducted a long-term incre-
mental scenario, ADE 100-10, consisting of six steps to
better evaluate the effectiveness of CoinSeg. To provide a
more comprehensive analysis, we present qualitative results
of multiple scenes, including indoor and outdoor, things
and stuff. The results show that CoinSeg rarely forgets old
concepts during incremental learning steps, validating its
effectiveness in long-term incremental scenarios.

In addition, we provide more qualitative results in Fig. 2
and Fig. 3, for VOC 15-1. In some samples, novel classes
appear in the incremental steps, and the results demonstrate
that our proposed CoinSeg can effectively adapt to these new

Table S9. Parameter search of hyper-parameter in flexible initial
learning rate, λlr . All experiments are conducted on VOC 15-1.

Method λlr
VOC 15-1 (6 steps)
0-15 16-20 all

CoinSeg

10−4 83.0 48.4 74.5
10−3 82.7 52.5 75.5
0.01 82.6 51.1 75.1
0.1 82.3 50.7 74.8
1 81.3 49.6 73.8

Table S10. More detailed hyperparameter search of λlr on VOC
10-1, within similar magnitudes.

Method λlr
VOC 10-1 (11 steps)
0-10 11-20 all

CoinSeg
1× 10−4 80.4 58.6 69.9
5× 10−4 80.2 59.1 70.2
1× 10−3 80.1 60.0 70.5
2× 10−3 79.8 59.5 70.1
5× 10−3 79.0 59.2 69.6

Table S11. Parameter search of hyper-parameter: threshold τ for
pseudo-label. All experiments are conducted on VOC 15-1.

Method τ
VOC 15-1 (6 steps)
0-15 16-20 all

CoinSeg

0.1 81.4 47.5 73.3
0.3 81.3 49.7 73.8
0.5 82.0 50.6 74.5
0.7 82.7 52.5 75.5
0.9 81.1 51.9 74.1

Table S12. Hyperparameter search of λc within a similar magni-
tude, in VOC 15-1.

λc
VOC 15-1 (6 steps)

0-15 16-20 all

0.75× 10−2 82.5 53.0 75.5(+0.0)
1× 10−2 82.7 52.5 75.5
3× 10−2 82.7 52.3 75.4(-0.1)
5× 10−2 82.6 51.4 75.1(-0.4)
7× 10−2 82.6 52.0 75.2(-0.3)

categories. Meanwhile, in samples which only contians base
classes, the predictions remain stable through all learning
steps, which indicates CoinSeg alleviating forgetting.
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Figure 1. Qualitative analysis for ADE 100-10.

Table S13. Hyperparameter search of K in MicroSeg with Swin-B
backbone (Left), and λc within a similar magnitude (Right).

K
VOC 15-1 (6 steps)
0-15 16-20 all

1 78.8 37.1 68.9
3 79.1 38.6 69.5
5 80.5 40.8 71.0
7 81.4 35.9 70.6
9 81.2 36.1 70.4

Limitations, future work and social impact Although
our approach, CoinSeg, achieves state-of-the-art perfor-
mance in numerous benchmarks, forgetting still exists in
long-term scenarios. For future work, it might be interesting
to explore how a well-designed deep learning model architec-
ture can be better applied to tackle the long-term incremental
learning tasks.

All of our experimental results are produced on public

datasets and the research of CoinSeg has no obvious AI
ethical issues, to the best of our knowledge. But training deep
learning models does have some potential environmental
impact due to the power consumption. We hope that our
proposed approach can help researchers to conduct further
exploration of class incremental semantic segmentation.
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Figure 2. More qualitative analysis of CoinSeg. The white borderline is ignore label in Pascal VOC 2012 dataset.
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Figure 3. More qualitative analysis of CoinSeg. The white borderline is ignore label in Pascal VOC 2012 dataset.
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