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1. More Experimental Details
1.1. Overlapped & disjoint setup

We provide a detailed explanation of the overlapped and
disjoint settings in this section. The overlapped setting al-
lows pixels in the samples from the sub-dataset D" to belong
to any classes, including past classes from learning step 1 to
t — 1 (i.e., C¥*71), current classes (C?), and future classes.
However, only the classes in C? are annotated in yt. More-
over, images that contain multiple classes may appear in
several learning steps with varying annotations. In contrast,
the disjoint setting studied in prior works, such as [!, 9, 0],
comprises a non-overlapping subset of datasets. Each learn-
ing step contains a unique C', and its pixels only belong to
classes seen in C'** ! or C*. Notably, the overlapped setup
is more realistic as it imposes a weaker restriction on the
data than the disjoint setup.

1.2. Reproducibility

In all experiments, CoinSeg adopts the same mask pro-
posals and the number of proposals N = 100, according to

prior practice as in the class incremental semantic segmen-
tation (CISS) method MicroSeg [| | ]. We adopt the official

of Swin Transformer [7/] for all
experimental results. In the case of CoinSeg-M, which is
CoinSeg equipped with a memory sampling strategy, we
implemented the strategy using the official code of the prior
CISS work SSUL [”?]. To be more specific, the strategy is
based on random sampling from the training dataset, while
also ensuring that at least one sample of every seen class is
present in the memory bank.

2. Additional Experimental Analysis
2.1. Detailed experimental results of CoinSeg

Tab. S1 shows the detailed experimental results over each
class in the Pascal VOC 2012 [“] dataset.

2.2. CoinSeg with ResNet101 backbone

To further validate the effectiveness of our proposed ap-
proach and ensure a fair comparison with other methods from
a different perspective, we conducted additional experiments
with the CoinSeg method using ResNet101 as the backbone.
The results are presented in Tab. S2, From which we can see,
even with a relatively weaker backbone, the results indicate
that our approaches, including CoinSeg and CoinSeg-M, are
still competitive, and achieve state-of-the-art performance
across multiple incremental scenarios.

2.3. Experimental results of disjoint setting

To provide a thorough comparison with prior works on
CISS, we further present the experimental results of our
proposed methods, CoinSeg and CoinSeg-M, in the disjoint
setting in Tab. S3. We evaluate our methods using both the
ResNet101 and Swin-B backbones. The results show that
our methods achieve state-of-the-art performance, surpassing
prior works on CISS.

2.4. Ablation study of contrast intra-class diversity

As highlighted in the main paper, strategies aimed at con-
trasting intra-class diversity are critical for learning robust


https://github.com/SwinTransformer/storage/releases/tag/v1.0.0

Table S1. Detailed experimental results of CoinSeg over each class.

bg aero bike bird boat  bottle  bus car cat chair cow
VOC 10-1 88.0 89.9 40.8 94..1 76.3 88.5 91.1 897 96:2 484 772
table dog horse mbike person plant sheep sofa train TV  mloU
37.8 894 753 83.7 85.5 47.1 59.5 274 748 532 725
bg aero bike bird boat  bottle  bus car cat chair cow
VOC 15-1 90.3 89.8 435 95..2 79.3 88.0 912 908 96:3 47.1  78.1
table dog horse mbike person plant sheep sofa train TV ~ mloU
68.5 933 91.0 920 89.7 437 641 27.0 727 554 755
bg aero bike bird boat  bottle  bus car cat chair cow
VOC 19-1 939 91.8 43.0 94..5 76.4 872 950 89.6 96:5 49.1 915
table dog horse mbike person plant sheep sofa train TV  mloU
659 89.7 90.1 90.3 90.9 63.0 93.0 540 86.0 448 798
bg aero bike bird boat  bottle  bus car cat chair cow
VOC 15-5 91.3 909 438 95..4 74.5 8.2 900 913 95:2 49.1 795
table dog horse mbike person plant sheep sofa train TV  mloU
66.7 90.5 91.0 909 90.1 552 724 313 840 731 77.6
bg aero bike bird boat  bottle  bus car cat chair cow
VOC 2-2 89.1 854 358 53.2 56.9 76.7 88.5 803 880 183 644
table dog horse mbike person plant sheep sofa train TV  mloU
430 592 649 798 80.8 60.2 51.8 324 741 679 643
Table S2. Comparison with state-of-the-art methods on Pascal VOC 2012 with ResNet101. is the upperbound.
VOC 10-1 (11 steps) | VOC 15-1 (6 steps) | VOC 19-1 (2 steps) | VOC 15-5 (2 steps) | VOC 2-2 (10 steps
Method Backbone 1 5 19 11-2(0 zgl) 0-15 16-2(0 211) 0-19 20( all’l) 0-15 16-2(0 211) 0-2 3-2(0 all)l)
LwF-MC [0] ResNet101 | 4.7 59 4.9 6.4 8.4 69 | 644 133 619 | 581 350 523 | 3.5 4.7 4.5
ILT [%] ResNet101 | 7.2 3.7 55 8.8 8.0 86 | 67.8 109 651 | 67.1 392 605 | 5.8 5.0 5.1
MiB [1] ResNet101 | 123 13.1 12.7 | 342 135 293|714 236 692 | 764 500 70.1 | 41.1 234 259
SDR [Y] ResNet101 | 32.1 170 249 | 447 218 392 | 69.1 326 674|574 526 699 | 130 5.1 6.2
PLOP [3] ResNet101 | 440 155 305 | 651 21.1 546|754 374 735 | 757 517 70.1 | 241 119 137
RCIL [10] ResNet101 | 554 151 343 | 706 237 594 | 685 12.1 658 | 788 520 724|283 190 194
SSUL [7] ResNetl01 | 71.3  46.0 593 | 773 36.6 67.6 | 777 297 754 | 77.8 50.1 712 | 624 425 453
SSUL-M[”] ResNetl01 | 740 532 64.1 | 784 490 714 | 778 498 765 | 784 558 73.0 | 58.8 458 47.6
MicroSeg [ 1] ResNetl01 | 726 487 61.2 | 80.1 36.8 69.8 | 788 140 757 | 804 528 738 | 614 406 435
MicroSeg-M [ 1] | ResNetlO1 | 77.2 57.2 67.7 | 81.3 525 744|793 629 785 | 8.0 592 76.6 | 60.0 509 522
CoinSeg (Ours) ResNetl01 | 73.7 450 60.1 | 80.6 362 70.1 | 80.7 294 783 | 80.8 31.0 689 | 683 462 494
CoinSeg-M (Ours) | ResNetl01 | 71.1 60.2 659 | 81.5 54.0 750 | 803 448 78.6 | 813 613 76.6 | 66.7 53.9 557

representations. In this regard, we provide quantitative evi- 2.5. Ablation to pseudo-labeling strategy in £;,;
dence to support this claim. Specifically, Tab. S5 reveals that
using L;,,; only yields a marginal improvement in perfor-
mance. This suggests that while assigning a representation
to each class via average pooling may be effective to some
extent, it is not the optimal strategy, and the improvement in
performance is limited. On the other hand, combining L;,,;
with L4, leads to a significant improvement in overall per-
formance. These findings indicate that contrastive learning
of intra-class diversity is an effective approach for robust
representation learning. Our proposed contrast intra- and inter-class diversity rep-

resentation approach places a greater emphasis on local infor-

mation. In contrast to conventional CNN-based architectures,

the Swin Transformer offers superior feature representation

As detailed in the main paper Sec. 3.2, we employ pseudo-
labeling within £;,,; to extract categories learned in previous
learning steps. To illustrate its impact, we report the perfor-
mance of L;,; just with the current class labels in Tab. S4
Right (‘GT’ row). We can see that the proposed pseudo-
labeling (PL) boosts the performance.

2.6. Discussions of adaption of Swin Transformer



Table S3. Experimental results on Pascal VOC 2012 for disjoint setup. 1: CoinSeg with Swin-B backbone.

Method VOC 15-1 (6 steps) | VOC 19-1 (2 steps) | VOC 15-5 (2 steps)

0-15 16-20 all | 0-19 20 all | 0-15 16-20 all
LwF-MC [0] 4.5 7.0 52 | 63.0 132 605 | 672 412 60.7
ILT [¢] 3.7 5.7 42 | 69.1 164 664 | 632 395 573
MiB [ 1] 462 129 379|696 256 674 | 71.8 433 647
SDR [Y] 594 143 48.7 | 708 314 689 | 746 441 673
PLOP [3] 579 137 46,5 | 754 389 73.6 | 711.0 428 643
RCIL [Y] 66.1 182 547|689 150 663 | 750 428 673
SSUL [?] 740 322 64.0 | 774 224 748 | 764 456 69.1
SSUL-M [?] 76.5 434 68.6 | 77.6 439 760 | 76.5 48.6 69.8
MicroSeg [1 1] 737 241 619|806 160 774 | 774 434 69.3
MicroSeg-M [ 1] 800 476 723 | 81.1 451 794 | 80.7 552 747
CoinSeg (Ours) 75.6 309 649|805 251 779 | 796 438 71.1
CoinSeg-M (Ours) | 80.9 474 729 | 80.8 50.6 794 | 81.7 589 763
CoinSegt (Ours) 82.0 46.1 73.4 | 820 340 802 | 8.1 553 757
CoinSeg-M7 (Ours) | 82.0 49.6 743 | 82.6 663 818 | 829 617 779

Table S4. Ablations to pseudo-labeling in L;,+. GT: ground truth,
PL: pseudo label.

VOC 15-1 (6 steps)
abel | 515 1620 all
GT | 816 543 751
PL | 827 525 755

Table S5. Ablation study of Contrast inter- & intra- class represen-
tations, \,. All experiments are conducted on VOC 15-1.

_ ' VOC 15-1 (6 steps)
Method = Lint  Litr | 15 1620 all

X X |84 437 716
CoinSeg v X | 808 459 72.4(+0.8)

v/ | 827 525 755(+3.9)

capabilities for local patches [5, 7]. Hence, we choose the
Swin Transformer as the backbone of the model. Tab. S6
show the comparison of both backbones, ResNet101 and
Swin Transformer. The results show that CoinSeg achieves a
significant improvement in performance with the Swin Trans-
former, particularly in more challenging long-term scenarios
such as VOC 10-1 and 2-2.

Meanwhile, due to the freeze strategy, prior methods
may not be able to fully take advantage of the backbone’s
performance. As a result, the performance improvement of
prior methods is limited when replacing ResNet101 with
Swin Transformer as the backbone. This conclusion can be
drawn by comparing the experimental results presented in
the main paper. However, our proposed CoinSeg method
shows significant performance improvement when using
Swin Transformer as the backbone.

It is important to note that while applying the Swin Trans-
former results in improved performance, our approach does

not depend solely on a stronger backbone. As shown in
Tab. S2, CoinSeg achieves state-of-the-art performance even
when using the ResNet101 backbone.

2.7. Search of hyper-parameters

Here we present the results of the hyper-parameters
search, including A, A., A; and 7. We have done the
parameter search on five orders of magnitude on VOC 15-
1, for A\, A; and A;-. The results of Tab. S7 show A, the
hyper-parameter to balance regularization constraints, is not
sensitive to the choice of these parameters. Even if the A,
varies by several orders of magnitude (102 to 1), the perfor-
mance is stable. The results show that our proposed method,
CoinSeg, is effective over a wide range of choices of hyper-
parameters. Tab. S8 presents the parameter search of A,
the hyper-parameter weight of contrast inter- and intra-class
representations (Coin). And Tab. S9 is the performance
comparison with different choices of );, in flexible initial
learning rate. Additionally, we also report the more detailed
experimental results in different incremental scenario (VOC
10-1) in Tab. S10. The results lead to similar conclusions.
Furthermore, we have done a parameter search for threshold
7 for pseudo-label in Tab. S11. The conclusions are still
similar.

Additionally, we also conduct a hyperparametric search
within a similar magnitude, as most previous works did, as
shown in Tab. S12. Our method shows a performance fluctu-
ation of only 0.4% in this perspective. This demonstrates the
robustness of our proposed CoinSeg with respect to hyperpa-
rameters. As a summary, we choose A, = 0.1, A, = 0.01,
A = 1073 and 7 = 0.7 for the best performance.



Table S6. Comparisons of CoinSeg with different backbones. 7: Re-implemented with Swin-B backbone.

VOC 10-1 (11 steps) | VOC 15-1 (6 steps) | VOC 19-1 (2 steps) | VOC 15-5 (2 steps) | VOC 2-2 (10 steps)
Method | Backbone | 16" 11 50 an | 0-15  16-20 0-19 20 all |0-15 1620 all | 02 320 all
CoinSeg | ResnetlOl | 737 450 60.1 | 80.6 362 70.1 | 80.7 294 783 | 80.8 31.0 68.9 | 683 462 494
CoinSegt | Swin-B | 80.0 634 725 | 827 525 755|815 448 798 | 821 632 776|701 633 643

Table S7. Parameter search of hyper-parameter of regularization
constraints, A,. All experiments are conducted on VOC 15-1.

VOC 15-1 (6 steps)

Method - Ar | () 15" 1600 all
102 | 80.9 533 743
001 | 819 526 749

CoinSeg 0.1 | 827 525 755
1 | 817 506 743

10 |88 504 735

Table S8. Parameter search of hyper-parameter to balance Coin,
Ac. All experiments are conducted on VOC 15-1.

VOC 15-1 (6 steps)
0-15 16-20 all

1073 | 814 489 737

0.01 | 82.7 525 1755

CoinSeg 0.1 | 824 51.8 75.1
1 81.8 499 742

10 | 80.6 46.6 725

Method Ac

2.8. Reproduction of past methods

In this paper, a portion of the experimental results are
obtained through reproducing previous methods, e.g., the
performance of previous methods equipped with the Swin-
B backbone. Note that we have made extensive efforts to
optimize the performance of previous methods on the Swin
transformer, to facilitate a fair comparison. Tab. S13 show
the parameter tuning the most crucial hyperparameter, K, in
previous method MicroSeg.

3. More Qualitative Results

In addition to the qualitative results shown in the main
paper, here in Fig. | shows more qualitative results of
ADE20K [!”] dataset. We conducted a long-term incre-
mental scenario, ADE 100-10, consisting of six steps to
better evaluate the effectiveness of CoinSeg. To provide a
more comprehensive analysis, we present qualitative results
of multiple scenes, including indoor and outdoor, things
and stuff. The results show that CoinSeg rarely forgets old
concepts during incremental learning steps, validating its
effectiveness in long-term incremental scenarios.

In addition, we provide more qualitative results in Fig. 2
and Fig. 3, for VOC 15-1. In some samples, novel classes
appear in the incremental steps, and the results demonstrate
that our proposed CoinSeg can effectively adapt to these new

Table S9. Parameter search of hyper-parameter in flexible initial
learning rate, A;,-. All experiments are conducted on VOC 15-1.

VOC 15-1 (6 steps)
0-15 16-20 all

1074 | 83.0 484 745
1073 | 827 525 755
0.01 | 826 51.1 751
0.1 | 823 507 748

1 81.3 496 738

Method A

CoinSeg

Table S10. More detailed hyperparameter search of \;, on VOC
10-1, within similar magnitudes.

VOC 10-1 (11 steps)

Method A 1610 1120 an
1x10% | 804 586 69.9

CoinSeg 5x107* | 802 59.1 702
1x1073 | 80.1 60.0 705

2x1073 | 798 595 70.1

5x1073 | 79.0 592  69.6

Table S11. Parameter search of hyper-parameter: threshold 7 for
pseudo-label. All experiments are conducted on VOC 15-1.

VOC 15-1 (6 steps)

Method 7 1 15" 1620 an
01814 475 733

031|813 497 738

CoinSeg 0.5 | 820 50.6 745
0.7 | 827 525 1755

09811 519 741

Table S12. Hyperparameter search of \. within a similar magni-
tude, in VOC 15-1.

\ VOC 15-1 (6 steps)

¢ 0-15 16-20 all
0.75x 1072 | 825 53.0 75.5(+0.0)

1x1072 82.7 525 75.5
3 x 1072 82.7 523  75.4(-0.1)
5 x 1072 82.6 514 75.1(-0.4)
7 x 1072 82.6 520 75.2(-0.3)

categories. Meanwhile, in samples which only contians base
classes, the predictions remain stable through all learning
steps, which indicates CoinSeg alleviating forgetting.
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Figure 1. Qualitative analysis for ADE 100-10.

Table S13. Hyperparameter search of K in MicroSeg with Swin-B
backbone (Left), and A\, within a similar magnitude (Right).

K VOC 15-1 (6 steps)

0-15 16-20 all
1 | 788 37.1 689
3 1 79.1 38.6 69.5
5 | 805 408 71.0
7 | 814 359 70.6
9 | 81.2 36.1 704

Limitations, future work and social impact Although
our approach, CoinSeg, achieves state-of-the-art perfor-
mance in numerous benchmarks, forgetting still exists in
long-term scenarios. For future work, it might be interesting
to explore how a well-designed deep learning model architec-
ture can be better applied to tackle the long-term incremental
learning tasks.

All of our experimental results are produced on public
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Step 6

datasets and the research of CoinSeg has no obvious Al
ethical issues, to the best of our knowledge. But training deep
learning models does have some potential environmental
impact due to the power consumption. We hope that our
proposed approach can help researchers to conduct further
exploration of class incremental semantic segmentation.
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Figure 2. More qualitative analysis of CoinSeg. The white borderline is ignore label in Pascal VOC 2012 dataset.
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Figure 3. More qualitative analysis of CoinSeg. The white borderline is ignore label in Pascal VOC 2012 dataset.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

Fabio Cermelli, Massimiliano Mancini, Samuel Rota Bulo,
Elisa Ricci, and Barbara Caputo. Modeling the background
for incremental learning in semantic segmentation. In Proc.
1IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 9233-9242, 2020. 1,2, 3

Sungmin Cha, YoungJoon Yoo, Taesup Moon, et al. Ssul: Se-
mantic segmentation with unknown label for exemplar-based
class-incremental learning. Advances in neural information
processing systems, 34,2021. 1,2, 3

Arthur Douillard, Yifu Chen, Arnaud Dapogny, and Matthieu
Cord. Plop: Learning without forgetting for continual seman-
tic segmentation. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition, pages 4040—4050, 2021. 2, 3
Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International Journal on Computer
Vision, 88(2):303-338, 2010. 1

Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen,
Jianyuan Guo, Zhenhua Liu, Yehui Tang, An Xiao, Chunjing
Xu, Yixing Xu, et al. A survey on vision transformer. /EEE
transactions on pattern analysis and machine intelligence,
45(1):87-110, 2022. 3

Zhizhong Li and Derek Hoiem. Learning without forget-
ting. IEEE Transactions on Pattern Recognition and Machine
Intelligence, 40(12):2935-2947, 2017. 2, 3

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 10012-10022, 2021. 1, 3

Umberto Michieli and Pietro Zanuttigh. Incremental learning
techniques for semantic segmentation. In Proc. IEEE Inter-
national Conference on Computer Vision Workshops, pages
0-0,2019. 2,3

Umberto Michieli and Pietro Zanuttigh. Continual semantic
segmentation via repulsion-attraction of sparse and disentan-
gled latent representations. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition, pages 1114-1124,
2021. 1,2,3

Chang-Bin Zhang, Jia-Wen Xiao, Xialei Liu, Ying-Cong
Chen, and Ming-Ming Cheng. Representation compensation
networks for continual semantic segmentation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7053-7064, 2022. 1, 2

Zekang Zhang, Guangyu Gao, Zhiyuan Fang, Jianbo Jiao, and
Yunchao Wei. Mining unseen classes via regional objectness:
A simple baseline for incremental segmentation. Advances in
neural information processing systems, 35,2022. 1,2, 3
Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Bar-
riuso, and Antonio Torralba. Scene parsing through ade20k
dataset. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition, pages 633-641, 2017. 4



