
A. Derivation of Theorems in Section 4.1
A.1. Theorem 4.2

Notation Statement in the Appendix. To involve risk between hypotheses and between hypothesis and ground truth
models, we use ✏·(h, f) or ✏·(h, h⇤) to specify which space the risk is computed on.

Definition A.1 (H�H-distance [6]). Given two feature distributions Dg and Dr, and the hypothesis class H, the H�H-
distance between Dg and Dr is defined as

dH�H(Dg,Dr) = 2 sup
h,h02H

|Px⇠Dg [h(x) 6= h
0(x)]� Px⇠Drh(x) 6= h

0(x)| . (17)

We first define the expected version of Definition 4.1

Definition A.2 (Expected Generative distance). Given two feature distributions Dh and Du, the ground truth labelling function
fh, fu, and the optimal hypothesis h⇤ = argmin

h2H
✏(h, fh) + ✏(h, fs) of a model training on the distribution Ds,Dh. The

h
⇤�f -distance between Dh and Du is defined as
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(18)

Note that the following inequality related to dH�H(Dg,Dr) holds for any h and h
⇤
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h,h02H

|Px⇠Dg [h(x) 6= h
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= 2|✏g(h, h
⇤)� ✏r(h, h

⇤)| .

(19)

Lemma A.3 ([1]). For a fixed hypothesis, the actual risk can be estimated from the empirical error with probability 1� �

✏(h, f)  ✏̂(h, f) +

r
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2m
log

2

�
, (20)

where ✏(h, f) is the actual risk, ✏̂(h, f) is the empirical risk, and m is the number of testing samples.

Proposition A.4 (Bound dh⇤(Du,Dh) by d̄GDB(Du,Dh) ). The distribution distance dh⇤(Du,Dh) can be bounded by it
empirical counterpart by

dh⇤(Du,Dh)  d̄GDB(Du,Dh) + C(
1

m
,
1

�
) , (21)

where C( 1
m
,
1
�
) is a constant term depending on the training sample size m and confidence 1 � �. Here D· represent the

distribution, and D· represents the dataset sampled from the corresponding distribution.

Proof. Similar to Equation 19, we can write our generative distance as

dh⇤(Du,Dh) = 2|✏h(h
⇤
, f)� ✏u(h

⇤
, f)| . (22)

Combining Lemma A.3, we have
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where h
⇤ = argmin

h02H
✏s(h0

, fs) + ✏h(h0
, fh), and ĥ

⇤ = argmin
h02H

✏̂s(h0
, fs) + ✏̂h(h0

, fh). Following the discussion
of [8], we assume the optimal hypothesis ĥ⇤ we can achieve is very close to the global minimum when the training sample is
large, then we can estimate h

⇤ in Equation 23 by ĥ
⇤. C( 1

m
,
1
�
) is obtained from Lemma A.3



Proof of theorem 4.2 Given the CZSL procedure described in section 3.1, with confidence 1� � the risk on the unseen
distribution is bounded by
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Note that for any distribution

|✏D(h, fD)� ✏D(h, h
⇤)| = |Ex⇠D[ h 6=fD ]� Ex⇠D[ h 6=h⇤ ]|
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where the inequality holds by the triangle inequality of the characteristic function, i.e., [a 6= b] � [a 6= c]� [b 6= c] for
8a, b, c 2 R. Equation (26) shows that the fourth line in Equation (25) is less than or equal to zero.

Combining Equation 26, the Equation 25 can be written as
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However, Equation (27) involves unknown risk and unsolvable distribution. We combine the expected risk and the actual
observed risk by Lemma A.3. Let h⇤ = argmin
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A.2. Explanation of Statement 4.3
Let Dh ⇠ Dh be the generated unseen set we are training on, where Dh is the empirical distribution of all possible

generations. In unsupervised domain adaptation, [56] uses random walk to select label set for the samples who have small
generalization error. Proposition 3.2 of [56] demonstrates that the self transition probability of a Markov chain represents
an upper bound on the margin linear classifier’s generalization error. This concept is adapted to connect our GDB bound
connected to the Markov Chain in below. In our sample generation procedure, we generate only one sample from each
class. Our discussion of this section will be based on this. We have d̄GDB(Du,Dh) / �

P
i2Iu

P(au[i] 2Dh), where the
probability is taken over Dh, and Iu is the index set of unseen real attributes. This is because the difference of the risk will be
reduced if the generations contain as many points close to ground-truth unseen ones as possible. Consider the Markov chain
with single step transition probabilities pij of jumping from node i to node j. Each node represents a generated sample. Let

pij = P[h(xi) = yj ] , (29)

where h is the hypothesis trained on Dh, and the h output predictions on the current generation’s classification space depending
on the quality of h, and the probability is taken over Dh. We assume the training achieves error ✏, then h(xi) = yi with



probability (1��) if the training set contains class with attribute ai. It is not hard to prove that P(au[i] 2Dh) � pii(1��)(1�✏)
by the generalization bound, since if au[i] /2Dh, yu[i] is not in the current generation’s classification space. It follows that

d̄GDB(Du,Dh) /�
X

i

P(au[i] ✓Dh)  �
X

i

pii(1� �)(1� ✏) (30)

Then we can release the bound d̄GDB(Du,Dh) by increasing
P

i
pii. Note that P(au[i] 2 Dh) can be replaced by

P(minah[j]2Dh |au[i] � ah[j]| < ") with the robustness assumption of the model.
When two generations have the same

P
i
pii, we prefer the one having higher diversity. The diversity of the generated

set Dh can be quantified from the perspective of determinantal point process. As mentioned in [31] and [14], Determinantal
Point Process (DPP) is a framework for representing a probability distribution that models diversity. More specifically, a DPP
over the set V with |V| = N , given a positive-definite similarity matrix L 2 RN⇥N , is a probability distribution PL over any
S ✓ V in the following form

PL[S] _ det(Ls) , (31)

where Ls is the similarity kernel of the subset S2. Since the point process according to this probability distribution naturally
capture the notion of diversity, we hope to generate a subset with high PL[Dh] where the V is viewed as Dh and the transition
matrix is viewed as the similarity kernel. One way to generate a set of unseen samples with high det(LDh) is to encourage the
diagonality of the transition matrix, which can be achieved by promoting orthogonality of the generated samples. Moreover,
since actually fh is a look-up table, low

P
j 6=i

pji can be explained as the large dis-similarity of the generated unseen samples
from different class.

B. More Details of Section 5
Algorithm 1 shows the overall training process. The Discriminator and Generator are alternatively optimized. During the

training of the Generator (line 11 – 22), we propose to generate unseen attributes (line 12 for interpolation-based method and
line 12,13 for dictionary-based method) and encourage the generations to be realistic and deviate from the seen generations
(line 19). After the training of each task, we propose to store the current semantic information and real features in the buffer.

B.1. Regularization terms in Loss Function 4
We closely follow [35] for the regularization terms of the Generator and Discriminator. The regularization term on

discriminator encourages the semantic embedding to be close to the class center, i.e., at task t

R
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D
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2
F , (32)

where A1:t
s

is the attribute matrix and C1:t
s

is the class mean matrix computed by seen features up to the current task. k · kF is
the Frobenius norm. The regularization terms on the generator encourage the seen generations to be close to the seen class
centers and have moderately distanced to their semantic neighborhoods. RG is defined as

RG = Lnuclear + Lsal . (33)

Lnuclear is the Nuclear loss, defined as
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t

s
�Ct

sg
k
2
F , (34)

where Ct

s
is the class mean matrix computed by seen features of current task, and Ct

sg
is the class mean matrix computed by

generated seen features of current task. Lsal is the incremental bidirectional semantic alignment loss defined as
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where N
t

s
is the number of current seen classes at task t, Ii is the neighbor set of class i, " is the margin error, h·, ·i is the

cosine similarity.
2The feature representation of the similarity space is typically normalized so the highest eigen value is 1, and hence the determinant (multiplication of the

eigen values) is < 1



Figure 5. Attribute distribution T-SNE visualizations of AWA1 dataset in different task with interpolation method

B.2. Visualization of Attribute Distribution

In our analysis, we assume that the hallucinated attributes can effectively represent the real unseen attributes compactly.
To visualize the distribution of these attributes, we employ the T-SNE embedding method. As shown in Figure 5, the plot
illustrates the distribution of seen attributes, unseen attributes, and hallucinated attributes across different tasks. It is important
to note that only a partial subset of the hallucinated attributes for each task is displayed in the plot, while the actual number of
hallucinated attributes is equivalent to the number of training samples.

As the task progresses and the learner is exposed to more seen classes, the hallucinated attributes become more aligned
with the unseen attribute. However, in areas where the distribution of unseen attributes is sparse (as indicated by the blank
regions in Figure 5), the hallucinated attributes are also sparse. In such cases, the hallucinated attributes tend to describe the
potential visual space, deviating from the seen attributes, and providing compact support for the unseen attributes. This aligns
with our assumptions and demonstrates the efficacy of our approach.

B.3. Numerical Verification of GRW Loss

In statement 3.3, we asserted that the GRW loss can effectively reduce d̄GDB . To demonstrate the relationship between the
GRW loss and the bound d̄GDB , we plotted a figure using the model at different epochs for different ĥ⇤. In this figure, we used
the difference between the generated hallucinated samples accuracy and the test unseen accuracy to represent d̄GDB = |✏̂u� ✏̂h|

at a randomly selected task. As shown in Figure 6, we observed a strong positive correlation between the GRW loss and
d̄GDB , particularly, when the loss decreases. This finding suggests that by minimizing the GRW loss, we can reduce the bound
between the generated hallucinated space and the true unseen space.



Figure 6. Relationship between d̄GDB and the GRW loss in CUB dataset

B.4. Relation to Other Work using Random Walk

We adapt random walk modeling [5] with three key changes.

1. Previous works such as [5, 29] have represented class prototypes or centers using a few examples provided for each class.
However, in our setting, we aim to deviate from seen classes and facilitate knowledge transfer to unseen classes through
attributes or semantic descriptions. To achieve this, we define the seen class centers C in a semantically guided way by
computing the mean of generated seen samples from their corresponding attributes. Specifically, we define [C]i as the
mean of generated samples from the attribute vector ai for class i, i.e., [C]i = mean G(z, ai), where G is the generator
and z is the noise vector.

2. [5, 29] use unlabeled data points to calculate the random walk, where we use generated examples.

3. In contrast to the few-shot learning problem where class prototypes are computed using unlabeled examples of seen
classes, our approach generates examples from hallucinated classes. Thus, the loss functions proposed in [5, 29] aim to
attract unlabeled samples to labeled samples, whereas our goal is to push hallucinated samples away from seen samples.
In [29], global consistency is encouraged using a random walk from labeled data to unlabeled data (represented by their
A matrix) and back to labeled samples (represented by their A> matrix). The aim is to promote the identity distribution
of paths, where the starting and ending points are of the same class. [5] investigates a more general case where the
number of random walk steps between unlabeled classes is greater than one (represented by their B matrix). In our case,
as none of the generated hallucinated samples belong to seen classes, we use the random walk approach to encourage
uniform distribution instead of identity distribution for all the paths from seen to generated examples of hallucinated
classes and back to seen classes, represented by our PCsXhPXhXhPXhCs matrix. This approach provides a deviation
signal that encourages the model to learn distinct representations for seen and hallucinated classes, facilitating better
knowledge transfer to hallucinated classes.

[56] focuses on unsupervised domain adaptation, which involves doing a random walk over all potential labeling circum-
stances on unlabeled target data to identify a stationary labeling distribution. Labeling stability is defined from the perspective
of a generalization bound which can be attained through a stationary Markov chain. We borrow the idea of using the Markov
chain to estimate the relationship between different labeling to find a stationary one that can reduce the generalization bound.
We employ the Markov chain to estimate the relationship between different hallucinated generations and discover a diverse one
that can reduce the generalization bound. The LGRW loss encourages the random walk to find a highly diverse hallucinated
generation, which in turn reduces the generalization bound.



Algorithm 1: Training procedure of ICGZSL
Input :Total task number T , training epoch E, random walk length R, decay rate of random walk �, and

coefficients �c,rd,i,rg , learning rate ↵G,D,Dic, buffer size B

Data :X1:T
s

, y1:T
s

, a1:T
s

Initialize :Generator, Discriminator

1 for t = 1 : T do
2 Get train loader by concatenating train set t with buffer data;
3 for e = 1 : E do
4 Get Xt

s
, y

t

s
sampled from train loader. Get a1:t

s
from current train set and buffer ;

5 begin Train Discriminator
6 Generate samples conditioning on seen attributes Xt

sg
= G(z, at

s
) ;

7 Compute real-fake loss Lreal-fake in equation (5) using real seen samples Xt

s
, generated seen samples Xt

sg
,

and current task attribute a
t

s
;

8 Compute classification loss Lclassification in equation 6 using real seen samples Xt

s
, generated seen samples

X
t

sg
, and attributes a1:t

s
;

9 Compute LD in equation 4 and update ✓D  ✓D � ↵DrLD ;
10 end
11 begin Train Generator
12 Generate a

t

ug
by interpolation between two random a

t

s
;

13 if Use dictionary based method then
14 Initialize the dictionary with the interpolated attribute and get ✓Dic

15 end
16 Generate samples conditioning on unseen attributes Xt

ug
= G(z, at

ug
) ;

17 Compute the second part of real-fake loss Lreal-fake in equation (5) using generated unseen samples Xt

sg
and

current task attribute a
t

s
;

18 Compute the second part of classification loss Lclassification in equation 6 using generated unseen samples
X

t

sg
and attributes a1:t

s
;

19 Compute tehe inductive loss in Linductive using C
t

s
= mean(Xt

s
), generated seen samples Xt

sg
, and unseen

generated samples Xt

ug
Compute LG in equation 4 and update ✓G  ✓G � ↵GrLG ;

20 if Use dictionary based method then
21 ✓Dic  ✓Dic � ↵DicrLD

22 end
23 end
24 end
25 begin Replay data
26 Save a

t

s
to the buffer;

27 Save current real features with size B/N
1:t
s

per class, reduce previous features to size B/N
1:t
s

28 end
29 end

C. Zero-shot learning experiments
C.1. Text based zero-shot learning experiments

Text-based ZSL is more challenging because the descriptions are at the class level and are extracted from Wikipedia, which
is noisier.

Benchmarks: To evaluate the efficacy of zero-shot learning (ZSL) with text descriptions as semantic class descriptions, we
conducted experiments on two well-known benchmarks, namely Caltech UCSD Birds-2011 (CUB)[58] and North America
Birds (NAB)[55]. While CUB contains 200 classes with 11,788 images, NAB has 1011 classes with 48,562 images. To
gauge the generalization capability of class-level text zero-shot recognition, we split the benchmarks into four subsets: CUB



Metric Seen-Unseen AUC (%)

Dataset CUB NAB
Split-Mode Easy Hard Easy Hard

ZSLNS [46] 14.7 4.4 9.3 2.3
SynCfast [9] 13.1 4.0 2.7 3.5
ZSLPP [18] 30.4 6.1 12.6 3.5
FeatGen [62] 34.1 7.4 21.3 5.6

LsrGAN (tr) [57] 39.5 12.1 23.2 6.4
+GRW 39.9+0.4 13.3+1.2 24.5+1.3 6.7+0.3

GAZSL (in) [68] 35.4 8.7 20.4 5.8
+ CIZSL [16] 39.2 11.9 24.5 6.4
+ GRW 40.7 +5.3 13.7+5.0 25.8+5.4 7.4 +1.6

Table 6. Showing Seen-Unseen AUC results of ZSL exper-
iments on noisy text description-based datasets CUB and
NAB(Easy and Hard Splits)

Setting CUB-Easy CUB-Hard

Top-1 Acc SU-AUC Top1-Acc SU-AUC

+ GRW (R=1) 45.41 39.62 13.79 12.58
+ GRW (R=3) 45.11 39.25 14.21 13.22
+ GRW (R=5) 45.40 40.51 14.00 13.07
+ GRW (R=10) 45.43 40.68 15.51 13.70

Table 7. Ablation studies on CUB Dataset (text). Each row shows
either baseline deviation losses and GRW losses with different length
on GAZSL [68]

Metric Top-1 Accuracy (%) Seen-Unseen AUC (%)

Dataset CUB NAB CUB NAB
Split-Mode Easy Hard Easy Hard Easy Hard Easy Hard

GAZSL [68] 43.7 10.3 35.6 8.6 35.4 8.7 20.4 5.8

GAZSL [68] + GRW 45.4 15.5 38.4 10.1 40.7 13.7 25.8 7.4

GAZSL [68] + only LGRW 45.3 14.8 38.2 10.3 40.1 12.8 25.8 7.4
Table 8. Ablation study using Zero-Shot recognition on CUB & NAB datasets with two split settings. We experiment with and without the
RGRW (second and last row). The first loss is the baseline method.

Easy, CUB Hard, NAB Easy, and NAB Hard. The hard splits were designed to ensure that the unseen bird classes from
super-categories do not overlap with seen classes, following prior work [10, 68, 16].

Baseline and training: We introduced a novel GRW loss (LGRW +RGRW ) into the inductive zero-shot learning method
GAZSL [68] and compared its performance with other inductive zero-shot learning methods. We employed the TF-IDF[49]
representation of the input text for the text representation function  (·), followed by an FC noise suppression layer. Our
experiments were conducted using a random walk length R = 10, and we found that longer random walk processes yield
better performance in the ablation study. Each ZSL experiment was executed on a single NVIDIA P100 GPU.

Evaluation and metrics: During the test, the visual features of unseen classes are synthesized by the generator conditioned
on a given unseen text description au, i.e. xu = G(su, z). We generate 60 different synthetic unseen visual features for each
unseen class and apply a simple nearest neighbor classifier on top of them. We use two metrics: standard zero-shot recognition
with the Top-1 unseen class accuracy and Seen-Unseen Generalized Zero-shot performance with Area under Seen-Unseen
curve [10].

Results: Our proposed approach improves over older methods on all datasets and achieves SOTA on both Easy and SCE(hard)
splits, as shown in Table 6. We show improvements in 0.8-1.8% Top-1 accuracy and 1-1.8% in AUC. GAZSL [68] + GRW
also has an improvement of around 2% over other inductive loss (GAZSL [68] + CIZSL [16]).

GRW Loss for Transductive ZSL: To better understand how the GRW improves the consistency of generated seen features
space and generated unseen features space, we conduct experiments on semantic transductive zero-shot learning settings.
The improvements are solely from the GRW loss with the ground truth semantic information. We choose LsrGAN [57] as
the baseline model. Our loss can also improve LsrGAN on text-based datasets on most metrics, ranging from 0.3%-3.6%.
However, as we expected, the improvement in the purely inductive/more realistic setting is more significant.

Ablation: Table 7 shows the results of our ablation study on the random walk length. We find that the longer random walk
performs better, giving higher accuracy and AUC scores for both easy and hard splits for CUB Dataset. With a longer random



Top-1 Accuracy(%) Seen-Unseen H

AwA2 aPY SUN AwA2 aPY SUN

SJE [3] 61.9 35.2 53.7 14.4 6.9 19.8
LATEM [60] 55.8 35.2 55.3 20.0 0.2 19.5
ALE [2] 62.5 39.7 58.1 23.9 8.7 26.3
SYNC [9] 46.6 23.9 56.3 18.0 13.3 13.4
SAE [34] 54.1 8.3 40.3 2.2 0.9 11.8
DEM [67] 67.1 35.0 61.9 25.1 19.4 25.6
FeatGen [62] 54.3 42.6 60.8 17.6 21.4 24.9
cycle-(U)WGAN [20] 56.2 44.6 60.3 19.2 23.6 24.4

LsrGAN (tr) [57] 60.1 34.6 62.5 48.7 31.5 44.8
+ GRW 63.7+3.6 35.5+0.9 64.2+1.7 49.2+0.5 32.7+1.2 46.1+1.3

GAZSL [68] 58.9 41.1 61.3 15.4 24.0 26.7
+ CIZSL [16] 67.8 42.1 63.7 24.6 25.7 27.8
+ GRW 68.4+9.5 43.3+2.2 62.1+0.8 39.0+23.6 27.2+3.2 27.9+1.2

Table 9. Zero-Shot Recognition on class-level attributes of AwA2, aPY and SUN datasets, showing that GRW loss can improve the
performance on attribute-based datasets.

AWA1 AWA2 CUB SUN

Total classes 50 50 200 705
Number of tasks 5 5 20 15

Initial seen classes 10 10 10 47
Covered class 10 10 10 47

Table 10. Seen and Unseen classes in different dataset

AWA1 AWA2 CUB SUN

Inter. Dic. Inter. Dic. Inter. Dic. Inter. Dic.

�c 10 1 1 10 1 1 1 1
�i 0.5 2 1 5 2 2 5 1
R 3 3 3 3 5 5 5 5

Table 11. The hyperparameter for Table 1

walk process, the model could have a more holistic view of the generated visual representation that enables better deviation of
unseen classes from seen classes.

GRW loss contains two parts, LGRW and RGRW . Table 8 shows the results of our ablation study on the RGRW in
zero-shot learning. We perform experiments both with RGRW and without RGRW . Training failed with NaN gradients in 5%
of the times without RGRW but 0% with RGRW ; thus, it is important for the training stability.

C.2. Attribute based zero-shot learning experiments

Benchmarks: We perform these experiments on the AwA2 [36], aPY [19], and SUN [42] datasets.

Baseline, training, and evaluation: We perform experiments on the widely used GBU [61] setup, where we use class
attributes as semantic descriptors. The evaluation process and training devices are the same as text-based experiments. We use
seen accuracy, unseen accuracy, harmonic mean of seen and unseen accuracy, and top-1 accuracy as the evaluation metrics.

Results: In Table 9, we see that GRW outperforms all the existing methods on the seen-unseen harmonic mean for AwA2,
aPY, and SUN datasets. In the case of the AwA2 dataset, it outperforms all the compared methods by a significant margin,
i.e., 15.1% in harmonic mean, and is also competent with existing methods in Top-1 accuracy while improving 4.8%.
GAZSL [68]+GRW has an average relative improvement over GAZSL [68]+CIZSL [16] and GAZSL [68] of 24.92% and
61.35% in harmonic mean.

D. Continual zero-shot learning experiments

D.1. Dataset and Continual Zero-Shot Learning Setup

We display the seen and unseen class conversions in each task for each dataset in the Table 10 to provide a better
understanding of the specific implementation of CZSL on different datasets. Covered class means the number of unseen class
converted to seen class per task.



mSA mUA mHA

Mean Std Mean Std Mean Std

AWA1 65.87 1.19 33.77 1.00 42.69 0.57
AWA2 70.52 0.46 34.52 0.90 44.45 0.79
CUB 42.11 0.88 22.10 0.67 27.80 0.53
SUN 36.29 0.18 21.07 0.33 26.44 0.20

Table 12. Our method in continual zero shot learning with interpo-
lated attributes. Mean and variance calculated on three runs with
different random seeds.

mSA mUA mHA

Mean Std Mean Std Mean Std

AWA1 66.35 0.28 32.75 0.94 41.90 0.91
AWA2 70.55 0.51 33.88 0.60 43.49 0.88
CUB 42.22 0.30 22.78 0.91 28.09 0.68
SUN 36.63 0.12 21.39 0.47 26.79 0.37

Table 13. Our method in inductive continual zero shot learning with
learnable dictionary of attributes. Mean and variance calculated
using three runs with different random seeds

D.2. More Ablations
Random seed: We experiment with multiple random seeds on the CUB dataset and show the averaged mH (line) and
standard deviation (shadow) in Figure 7. The random seed mainly affects the generation part of GZSL learners. The generated
data is used directly or indirectly to train the classifier of the unseen class. Figure 7 shows that previous models are sensitive to
random seeds, but our model is not. Previous models use the generated data as replay data or directly train the classifier, while
ours avoids these. Our method uses a non-parametric classifier, a similarity-based classifier. During training, we pay more
attention to improving the generalization ability of our embedder (discriminator) by encouraging the consistency between the
generated visual space and the true visual space. Plus, we store the real data in the buffer. These all make our model more
stable. Although we only reported the results of one seed (2222) in Table 4, the figure shows that the effect of different seeds
on the results is not significant.

We also report mean and standard deviation of multiple runs of our methods in each dataset in Table 12, 13. It shows that
experiments on all the datasets with both attribute generation methods have relatively small variance. Although interpolation-
based method has lower mean harmonic accuracy on fine-grained dataset CUB and SUN, it is shown to be more stable with
less variance than dictionary-based method.

Figure 7. Mean harmonic accuracy at the end of each task with 5 different random seeds on CUB [58]. Lines show the mH, and shadows
show the standard deviation.

D.3. Hyperparameters in GRW loss
Hyperparameter for Table 1: We use the validation set to tune the hyperparameter random walk step R, coefficient of

Lcreativity �c, and coefficient of Linductive �i. The hyperparameter used to report Table 1 is shown in Table 11
Walk length R and decay rate �: We do an ablation study on the random walk length R and decay rate � of the GRW loss

in continual zero-shot learning experiments. Table 14 shows our method with different random walk lengths in AWA1 dataset



Ours Interpolation Ours Dictionary

mSA mUA mHA mSA mUA mHA

R

1 41.7 21.2 27.1 43.6 22.7 28.4
3 42.3 22.1 27.7 42.1 20.6 26.6
5 42.2 22.7 28.4 42.4 23.6 28.8

Ours Interpolation Ours Dictionary

mSA mUA mHA mSA mUA mHA

R

1 65.4 33.9 42.7 66.6 32.7 41.5
3 67.0 34.2 43.4 67.1 33.5 42.8
5 65.8 33.0 42.1 66.8 32.7 41.7

Table 14. Our method with different random walk length R in AWA1 dataset (right) and CUB dataset (left)

Ours-interpolation Ours-dictionary

mSA mUA mH mSA mUA mH

� 0.7 40.97 21.78 27.26 42.22 22.03 27.47
1 40.95 21.21 27.05 42.62 21.6 27.43

Ours-interpolation Ours-dictionary

mSA mUA mH mSA mUA mH

0.7 66.8 33.42 42.87 66.93 32.41 41.51
� 1 66.07 32.31 41.69 66.34 32.87 41.76

Table 15. Our method with different decay rate � on CUB dataset (left) and AWA1 dataset (right)

Ours-interpolation Ours-dictionary

mSA mUA mH mSA mUA mH

0.01 41.81 20.93 27.01 42.8 23.07 28.51
0.1 42.32 21.27 27.11 42.73 21.98 27.85�i

1 40.97 21.78 27.26 42.22 22.03 27.47

Ours-interpolation Ours-dictionary

mSA mUA mH mSA mUA mH

0.1 66.81 32.82 42.15 66.32 32.11 41.15
1 66.8 33.42 42.87 66.93 32.41 41.51�i

10 66.38 33.77 42.92 66.47 31.81 40.89

Table 16. Our method with different inductive coefficients �i on CUB dataset (left) and AWA1 dataset (right)

and CUB dataset. In the dataset AWA1, moderate lengths give the highest mHA while in the CUB dataset higher random walk
lengths provide the best mHA. It shows that the more challenging the dataset, the more random walk length is needed. Unlike
ZSL experiments, in CZSL experiments, knowledge is not only transferred to the unseen class space but also to the next task.
Long walk length could give the model a more holistic view of the current task, but may harm the transformation to the next
task. Therefore, tuning the number of random walk steps is required for new datasets.

Decay rate � works as a scale factor to the GRW loss to prevent a specific area in the probability matrix from being too
close to one, resulting in exponential growth in the multiplication results when compared to other areas. Compared to the
non-decay case when � = 1 in Table 15, the decayed case has noticeable improvements in unseen accuracy, resulting in better
harmonic accuracy.

D.4. Ablations on Weight of Inductive Loss
Inductive weight �i We also do an ablation study on the inductive coefficient �i in Table 16. This factor mainly affects the
proportion of inductive loss in the overall loss. We found that our model is not sensitive to this hyperparameter. Whether on
the larger dataset CUB or the smaller dataset AWA1, the difference of mH of different �i on our model does not exceed 1%.
Therefore, our model does not need too much parameter tuning process.

D.5. Continual zero-shot learning with other common settings
Although our main research problem is inductive setting, and we think real replay is needed, we still have an open attitude

to other settings and migrate our model naively to their setting. We show experiment results in these settings in Table 17 and
compare them with other methods.

We mentioned earlier that the generative replay method has unbalanced storage and buffer overload problems, but many
models still use generative replay. When data privacy concerns are encountered, the generative replay method may be an
alternative to the real replay method. When using the generative replay, our model outperforms most existing methods. Our
problem analysis cannot be applied in this setting, since we believe the replayed feature should have a balanced number in
each class.

Our primary focus is on the inductive setting, but we also provide results in the transductive setting and with generative
replay. In the transductive setting, we use the ground truth unseen attributes to generate the visual features, and our loss works
on these generations. Our method is comparable with other transductive methods, even without carefully designing how to use
the semantic information.

Through these knots, we believe that our model has the possibility of being migrated to other settings and is valuable for
further explorations in other settings.



Table 17. Comparison of our inductive loss in other common CZSL settings
replay method zsl setting AWA1 AWA2 CUB SUN

mSA mUA mHA mSA mUA mHA mSA mUA mHA mSA mUA mHA

CN-ZSL real in - - - 33.55 6.44 10.77 44.31 14.8 22.7 22.18 8.24 12.46
Ours-interpolation real in 62.9 32.77 42.03 67.41 35.4 45.06 40.17 21.78 27.26 36.29 21.05 26.51

Ours-dictionary real in 63.43 32 41.15 68.02 33.22 42.89 41.45 22.03 27.47 36.54 21.31 26.76

DVGR generative tr 65.1 28.5 38 73.5 28.8 40.6 44.87 14.55 21.66 22.36 10.67 14.54
A-CGZSL generative tr 70.16 25.93 37.19 70.16 25.93 37.19 34.25 12.42 17.41 17.2 6.31 9.68

BD-CGZSL generative tr 67.55 36.04 47.88 71.37 38.76 51.6 31 23.97 26.01 30.08 20.07 23.72
Ours-interpolation generative tr 62.43 33.03 42.01 66.84 34.01 43.77 32.53 16.66 21.65 - - -

Ours-dictionary generative tr 62.34 31.5 40.18 68.07 34.45 44.17 30 16.18 20.55 - - -

BD-CGZSL-in generative in 62.12 31.51 40.46 67.68 32.88 42.33 37.76 9.089 14.43 34.93 14.86 20.8
Ours-interpolation generative in 61.43 34.04 42.18 67.34 35.29 44.95 29.78 16.86 21.06 30.9 18.4 22.99

Ours-dictionary generative in 62.26 30.88 39.68 67.44 33.68 43.24 28.34 16.94 20.57 30.13 18.56 22.85


