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In the Supplementary Material, we first provide the de-
tailed derivation of the gradient of generalized entropy min-
imization loss. Following it, the implementation details are
provided. Then we apply our method to a strong baseline
ERM and a SOTA method SWAD [2] on the DomainBed [3]
benchmark to further validate its wide application. More-
over, we show that previous methods heavily rely on con-
tinuous adaptation, which may perform poorly in multi-
domain scenarios. Finally, we provide the full results of
the performance comparison in Sec. 4.1 in the main text.

A. The gradient analysis

The derivation of statistics transformation. Given fea-
ture map x, the source statistics (µs, σs) and target statis-
tics (µt, σt) for each normalization layer, where the layer
indices are omitted for simplicity. To eliminate the nega-
tive effect of source statistics, we propose to transform the
source statistics into the affine parameter in the normaliza-
tion layer with the following formula:
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This process can be seen as a re-initialization of the affine
parameter, which is done before the finetuning process, that
is, we finetune the transformed parameters instead of the
original parameters.

The derivation of Generalized Entropy Minimization
(GEM) loss. The GEM loss is
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And the gradient of pi with respect to the logits zi is:
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Then the gradient of logit zk of class k can be obtained by
the following formula:

∂L

∂zk
= −

[∂pk log qk
∂zk

+
∂
∑

j ̸=k pj log qj

∂zk

]
(12)

= −
[∂pk
∂zk

log qk + pk
1

qk

∂qk
∂zk

+
∑
j ̸=k

(
∂pj
∂zk

log qj + pj
1

qj

∂qj
∂zk

)]
(13)

= −
[ 1

τ1
pk (1− pk) log qk +

pk
qk

1

τ2
qk (1− qk) (14)

+
∑
j ̸=k

(
− 1

τ1
pjpk log qj −

pj
qj

1

τ2
qjqk

)]
(15)

1



Table 1: The running time (ms) on the Art domain with 2048 images.

Non-Adapted AdaBN LAME ARM SLR Tent AdaMixBN DomainAdaptor-T

Time (ms) 34.4 37.19 41.88 175.94 155.63 152.19 41.88 194.69
Acc (%) 78.25 76.36 80.05 81.02 81.66 81.06 80.81 82.51
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When the gradient of pi is detached, the gradient of logit
zk becomes:
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which takes the same form of knowledge distillation [6].

B. Implementation Details

In all experiments, we adopt Resnet-18 and Resnet-
50 [4] models trained with ERM (i.e., simply aggregate all
source data) as our baseline. During adaptation, the learning
rate of the SGD optimizer is set to 1e − 3 without momen-
tum. The default batch size is 64 and test images are resized
to 224 × 224 without other augmentation. For GEM-Aug,
we adopt weak augmentations that consist of a random crop
with a scale range of [0.8, 1] and a random flip with a prob-
ability of 0.5. The test order of samples is fixed for a fair
comparison to each method.

C. More Experiments
C.1. Time cost comparison

We have added the run-time comparison of our method
and previous methods with a batch size of 64 on the Art
domain. The experiments are done on an RTX2080 GPU.
As shown in Tab. 1, with a little computational overhead,
our method could achieve better performance.

C.2. Experiments on DomainBed

We apply our method to ERM and SWAD trained on Do-
mainBed on three datasets (i.e., PACS [7], VLCS [10] and
OfficeHome [11]). The checkpoint of ERM is selected in
the last iteration and SWAD is the ensembled version of
ERM. We test the performance of these methods on the
whole leave-out domain with a batch size of 64 and a learn-
ing rate of 0.05. The results are averaged by three indepen-
dent runs. By applying our method to these two methods,
although SWAD could achieve strong performance on Do-
mainBed, we still could improve on it by fully exploiting
the information in the test batch for adaptation.

Table 2: Performance (%) comparison to ERM and SWAD
on the DomainBed benchmark.

PACS VLCS OfficeHome Avg.

ERM 83.32 75.51 65.30 74.71
+MixAdaBN 85.76 76.00 66.03 75.93
+DomainAdaptor-T 86.61 76.60 66.70 76.63
+DomainAdaptor-SKD 86.31 76.71 66.60 76.54
+DomainAdaptor-Aug 86.68 77.09 67.51 77.09

ERM+SWAD 86.77 77.62 70.31 78.23
+MixAdaBN 88.88 78.83 70.82 79.51
+DomainAdaptor-T 89.42 79.02 70.90 79.78
+DomainAdaptor-SKD 89.30 79.21 71.03 79.85
+DomainAdaptor-Aug 89.62 79.58 71.71 80.30

C.3. Comparison to continuous adaptation

Since our method only requires a single finetuning it-
eration by fully exploiting the information of a test batch,
which differs from the previous test-time adaptation meth-
ods [12, 9, 1] that have a large demand of data by employing
online updating. To further demonstrate the poor adaptation
ability of previous test-time adaptation method, we conduct
several experiments to verify that 1) these methods rely on
the continuous adaptation and cannot effectively exploit the
current batch data in Tab. 3; 2) the performance degradation



occurs when the original prediction is inaccurate in Tab. 4
or multiple domains exist in Tab. 5 and Fig. 1.

Table 3: The performance (%) of Tent without online up-
dating weights or without the momentum term in SGD.

P A C S Avg.

baseline 96.44 78.25 75.57 67.48 79.44±0.44

Tent w/o both 95.70 76.38 78.75 71.07 80.47±0.28

Tent w/o Online 95.80 76.69 78.98 71.69 80.79±0.19

Tent w/o Momentum 95.87 77.05 79.33 73.43 81.42±0.17

Tent 96.42 79.39 80.86 77.44 83.53±0.42

Tent relies on continuous finetuning. We argue that
the success of Tent relies on two critical factors: the contin-
uous finetuning and the momentum term in the optimizer.
To verify it, we conduct an ablation study by only updating
the model weights online without momentum in the opti-
mizer or only enabling the momentum without online up-
dating the model weights. As shown in Tab. 3, both mo-
mentum term and online updating could improve the per-
formance of Tent (i.e., 83.53% vs. 80.79%, and 83.53% vs.
81.42%). The online updating could preserve the learned
knowledge from previous batches, while the momentum
term could utilize the history gradients to guide current gra-
dients. Also, we could find that online updating is more
important since all of the learned knowledge is kept in the
finetuned weights. However, when both are missing, there
is a little improvement of Tent, which is actually owing to
AdaBN [8] (80.44% on PACS) equipped in Tent, as men-
tioned before. Therefore, Tent that adapts only once cannot
effectively exploit the unlabeled batch.

Continuous adaptation to a single domain. We per-
form continual adaptations for Tent to investigate whether
online learning can always improve performance. Since
Tent only utilizes AdaBN for normalization, which would
degrade performance for some datasets (e.g., VLCS), we
also add the comparison to the variants of Tent that update
the source statistics online with incoming batch statistics,
and we normalize the batch with the updated source statis-
tics. The updating momentum is denoted as m. m = 1 is
the original version of Tent and when m = 0, Tent only
utilizes the original source statistics. As shown in Tab. 4,
compared with adaptation only once, the performance of
Tent that adapts online can be improved on PACS, VLCS,
and OfficeHome with online adaptation when m > 0.5.
However, its performance still cannot surpass our method.
Besides, its performance on MiniDomainNet decreases a lot
because when the model is not confident about the incoming
data, the training on these data may only degrade the perfor-
mance and online learning would continuously enhance this
effect and finally obtain a badly trained model.

Continuous adaptation to multiple domains. Al-

Table 4: The continuous adaptation with Tent and its vari-
ants that continuously update the source statistics with mo-
mentum m. Best performance (%) is bolded for Tent.

Method PACS VLCS OH MDN

Adaptation only once

DeepAll 79.44 75.77 64.61 65.12

Tent 80.59 69.69 63.58 64.37

DomainAdaptor-T 85.04 77.54 65.39 66.39

DomainAdaptor-SKD 84.37 78.10 65.61 66.42

DomainAdaptor-Aug 84.93 78.50 66.73 68.23

Continuous adaptation

Tent, m = 0.0 49.42 58.69 16.08 1.36

Tent, m = 0.1 80.47 65.34 51.09 4.71

Tent, m = 0.5 83.89 73.07 64.55 26.54

Tent, m = 0.9 83.60 73.42 64.55 47.44

Tent, m = 1.0 83.53 73.37 64.52 48.23

Table 5: The performance (%) of continuous adaptation on
PACS datasets. The baseline is trained on the Photo domain
and the best performance is bolded.

A C S AC AS CS ACS

Baseline 59.08 25.78 29.84 41.45 39.90 28.33 35.96

Tent 67.53 62.20 43.70 48.18 36.79 31.28 36.33

Ours 64.45 49.70 50.79 56.64 55.39 50.39 53.88
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Figure 1: Continuous adaptation on CIFAR-10-C dataset.
The trained model is adapted to the batches sampled from
shuffled domains. ‘(s)’ means a single domain is adapted.

though continuous adaptation to a single domain could im-
prove model performance on some datasets (e.g., PACS),
when faced with batches from multiple domains, the per-
formance of Tent drops drastically. We conducted an exper-
iment on the PACS dataset. The result is shown in Tab. 5.
The baseline is trained on the Photo domain and we adapt
it to the other three domains (i.e., Art (A), Cartoon (C),
Sketch (S)). When the model is adapted to a single domain,
it could improve the performance on both Art and Car-
toon significantly (e.g., 67.53% vs. 59.08% on Art). How-
ever, when two domains are incorporated, the improvement
drops and it even degrades the performance (i.e., 36.79%
vs. 39.90%) on the environment mixed with Art and Sketch
domains. When all three domains are included, there is only
little improvement (i.e., 36.33% vs. 35.96%). Meanwhile,
our method could steadily improve the performance of the
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Figure 2: The relationship between the number of training
samples and the norm of classifier weights.

Table 6: Full results of performance (%) comparison to
SOTA with Resnet-18 backbone.

D1 D2 D3 D4 Avg.

PACS

DeepAll 96.44 78.25 75.57 67.48 79.44±0.44

AdaMixBN 96.85 80.81 78.03 78.04 83.43±0.23

GEM-T 97.40 82.51 80.65 79.59 85.04±0.23

GEM-SKD 97.01 82.22 80.46 77.78 84.37±0.28

GEM-Aug 97.20 83.04 80.20 79.28 84.93±0.19

VLCS

DeepAll 97.23 62.33 75.11 68.43 75.77±0.29

AdaMixBN 96.86 66.60 74.89 68.10 76.62±0.27

GEM-T 98.06 66.80 74.67 70.62 77.54±0.14

GEM-SKD 98.43 67.33 75.07 71.55 78.10±0.14

GEM-Aug 98.40 67.74 75.43 72.43 78.50±0.22

OfficeHome

DeepAll 58.81 50.26 73.78 75.60 64.61±0.18

AdaMixBN 59.36 51.32 74.06 75.57 65.08±0.12

GEM-T 59.63 52.19 74.19 75.53 65.39±0.19

GEM-SKD 59.96 52.52 74.26 75.71 65.61±0.14

GEM-Aug 62.51 52.64 75.05 76.72 66.73±0.25

MiniDomainNet

DeepAll 67.27 61.05 69.91 62.26 65.12±0.11

AdaMixBN 67.76 61.48 70.15 64.55 65.98±0.10

GEM-T 67.99 62.09 70.14 65.35 66.39±0.08

GEM-SKD 68.08 62.27 69.93 65.40 66.42±0.08

GEM-Aug 69.09 64.69 71.94 67.19 68.23±0.08

baseline. To further investigate the effect of multiple do-
mains, we also experiment on CIFAR-10-C dataset [5]. As
shown in Fig. 1, when more domains are incorporated, the
performance of a multiple-domain adapted Tent drops dras-
tically, while our method could achieve comparable perfor-
mance to a single-domain adapted Tent.

C.4. Further analysis of the norm of classifiers

In the Experiment section, we find that our method in-
creases model confidence by changing the angle between
the classifier weights and features, which also increases the

Table 7: Full results of performance (%) comparison to
SOTA with Resnet-50 backbone.

D1 D2 D3 D4 Avg.

PACS

DeepAll 98.22 86.73 76.23 76.27 84.36±0.43

AdaMixBN 98.59 87.82 80.20 80.89 86.88±0.41

GEM-T 98.69 89.04 83.52 83.71 88.74±0.30

GEM-SKD 98.71 89.26 83.91 82.41 88.57±0.38

GEM-Aug 98.90 89.40 83.04 82.44 88.45±0.16

VLCS

DeepAll 97.55 63.46 75.56 71.25 76.96±0.54

AdaMixBN 96.85 67.56 75.86 70.77 77.76±0.52

GEM-T 97.57 68.01 75.50 73.01 78.52±0.57

GEM-SKD 98.06 68.70 76.22 73.47 79.11±0.38

GEM-Aug 97.88 68.98 77.30 74.05 79.55±0.36

OfficeHome

DeepAll 67.43 55.95 78.91 81.18 70.87±0.16

AdaMixBN 68.03 56.60 78.80 81.19 71.15±0.17

GEM-T 68.52 57.91 78.96 81.10 71.62±0.14

GEM-SKD 68.74 58.26 79.08 81.49 71.89±0.10

GEM-Aug 71.00 58.06 79.98 82.33 72.84±0.05

MiniDomainNet

DeepAll 73.32 67.78 76.02 68.82 71.49±0.10

AdaMixBN 73.39 68.27 76.26 70.28 72.05±0.04

GEM-T 73.28 68.41 75.84 70.84 72.10±0.09

GEM-SKD 73.69 68.89 76.36 71.11 72.51±0.10

GEM-Aug 74.21 70.91 77.73 72.43 73.82±0.10

norm of the feature. With a larger norm, the model could
make a more confident prediction. In addition to the norm
of the feature, the norm of a classifier also plays an impor-
tant role in classification. If the weight of a class has a large
norm, it would make a more confident prediction. Besides,
if the model is trained with a large number of samples for a
single class, it would be more confident in this class. There-
fore, we hypothesize that more training samples may have
a positive relation to the norm of classifier weights. We plot
the correlation between the norm of classifier weights and
its corresponding training samples in Fig. 2. As seen, there
is a positive correlation between these two factors. Note
that this phenomenon is more evident on PACS compared
to OfficeHome because the training number for each class
is relatively small and similar to each other, resulting in a
less obvious correlation.

C.5. Full results of the comparison to SOTA

We provide the full results of the comparison to previous
methods in Sec. 4.1 of the main text in Tabs. 6 and 7. Note
that, we omit the domain names for simplicity.
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