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In this document, we provide additional materials to sup-
plement our main text. We will first provide more details of
our Foreground Object Search (FOS) datasets and the im-
plementation of our method in Section 1 and 2, respectively.
In Section 3, we will present the quantitative comparison
between our method and baseline approaches on different
categories. Meanwhile, more qualitative results of differ-
ent methods will be provided in Section 4. In Section 5,
we will demonstrate that our method can be applied to FOS
for a mixture of different categories. In Section 6, we will
apply the proposed method to new categories that have not
been seen during training, which further verifies the gen-
eralization ability of our model. Then, we will study the
effect of different hyper-parameters adopted in our method
in Section 7, including three trade-off parameters used in
our loss function and the ratio of positive and negative fore-
grounds per background during training stage. In Section 8,
we will show some failure cases generated by our method
and discuss the limitation of our method.

1. Our FOS Datasets
Previous works [9, 10, 12] on FOS did not release their

datasets, which inspired us to build our own FOS datasets:
S-FOSD with synthetic composite images and R-FOSD
with real composite images. In this section, we will present
more details about our dataset and compare our datasets
with previous datasets.

1.1. Rules for Foreground Selection

To accommodate our task, we delete some categories
and objects according to the following rules: 1) The cate-
gories where most of the foregrounds look similar, so that
most foregrounds can be considered compatible (e.g., light-
house, apple); 2) The categories where most of the fore-
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ground objects usually appear non-independently, as parts
of larger objects (e.g., clothing, wheel, flower); 3) The ob-
jects that are too large or too small in the background image
(e.g., smaller than 5% or larger than 50% of the whole im-
age). 4) The objects that are occluded by other objects. 5)
The categories with too few remaining objects after remov-
ing occluded objects and objects with inappropriate sizes.
Summarily, the above categories and objects are either un-
suitable for FOS task or beyond our focus (geometry and
semantic compatibility).

1.2. Remaining Foreground Categories

Following the above rules, we select 32 foreground cat-
egories to construct our FOS dataset, which are airplane,
bird, book, bottle, box, bread, bus, cake, camera, car, cat,
coffee cup, keyboard, couch, dog, duck, fish, goose, guitar,
horse, laptop, cellphone, monkey, motorcycle, pen, person,
frame, taxi, toilet, train, wastebin, watch.

1.3. S-FOSD Test Set Building

Recall in Section 3.1 of the main text, we built the test set
of S-FOSD dataset mainly concerning its diversity and qual-
ity. Here we will provide more details about the construc-
tion process. For each category, we first extract the features
of all foreground images using ResNet [2] pretrained on Im-
ageNet [1], and then cluster them into 100 clusters based
on feature distance. Then we select the foreground objects
closest to the cluster centers along with their background
images as candidates and remove low-quality samples, in-
cluding blurred objects, the background images whose light
conditions are particularly dim, and so on. After that, we
randomly select 20 background images from the remaining
samples for each category. Based on the clusters where the
20 background images are located, we select 25 foreground
images closest to each cluster as candidate foreground im-



Dataset coarse/fine compatible factors category fg/category bg synthetic/real human public
CAIS-Training [9] coarse semantics 8 2,962∼38,418 86,800 synthetic N N
CAIS-Evaluation [9] coarse semantics 8 114∼364 80 real Y N
IFO [5] fine geometry, semantics - - - synthetic Y N
FFR-Training [8] fine geometry, style 15 - 16,700 synthetic N N
FFR-Evaluation [8] fine geometry, style 3 150 15 synthetic Y N
GALA-Pixabay [12] coarse geometry, lighting 914 912 833,964 synthetic N N
GALA-OpenImages [12] coarse geometry, lighting 350 3,926 1,374,344 synthetic N N
Our S-FOSD coarse geometry, semantics 32 500∼5,000 57,859 synthetic N Y
Our R-FOSD coarse geometry, semantics 32 200 640 real Y Y

Table 1. Comparison with previous FOS datasets. “coarse/fine”: coarse-grained or fine-grained retrieval. “fg/category”: foreground images
per category. “bg”: background images. “synthetic/real”: synthetic/real composite images. “human”: human annotation on compatibility.

Figure 1. “num fg”: the number of foreground images per category in our S-FOSD dataset. “num compatible fg”: the average number of
compatible foreground images per background in one category of our R-FOSD dataset, in which we provide 200 candidate foregrounds for
each background and the compatibility label is assigned by three human annotators.

ages. In this way, we obtain 20 background images and
20×25 = 500 candidate foreground images for each cate-
gory. After filtering low-quality images, we randomly se-
lect 200 foregrounds and 20 backgrounds per category. By
selecting high-quality samples from cluster centers, we en-
sure the quality and diversity of test samples in S-FOSD
dataset, which helps provide more effective evaluation for
FOS.

1.4. Comparison with Previous Datasets

Following [9, 12], we build our FOS datasets based on
an existing large-scale real-world dataset, i.e., Open Im-
ages [4]. Table 1 provides a summary comparison be-
tween our datasets and the datasets that are used in pre-
vious works [9, 10, 12, 5, 8]. Among these datasets,
GALA-Pixabay and GALA-OpenImages [12] contain far
more background and foreground images covering more
categories, probably because that they did not filter some
categories or objects like us. However, this may harm the
quality of their dataset. In contrast, we remove some unsuit-
able categories and low-quality images to build dataset (see

Section 1.1), which contributes to more effective training
and evaluation on FOS task. Moreover, only the evaluation
set of CAIS (CAIS-Evaluation) [9] and our R-FOSD dataset
provide real composite images, which enables more practi-
cal evaluation for real-world applications. Moreover, differ-
ent from the above works, we have released our datasets to
facilitate research on FOS task.

1.5. Dataset Statistics

S-FOSD Dataset. The S-FOSD dataset contains totally
63,619 foreground images covering 32 categories. In Fig-
ure 1, we show the number of foregrounds per category in
S-FOSD dataset. During experiments, S-FOSD dataset is
divided into training set and test set. The training set has
57,219 pairs of foregrounds and backgrounds, with a maxi-
mum of 4800 pairs and a minimum of 300 pairs in one cat-
egory. The test set provides 20 backgrounds and 200 fore-
grounds (including 20 foregrounds from the same images as
the backgrounds) for each category.
R-FOSD Dataset. The R-FOSD dataset shares the same
foregrounds with the test set of S-FOSD, and has 20 back-



Figure 2. Some examples of our S-FOSD dataset and R-FOSD dataset. For R-FOSD dataset, we show real composite images generated by
placing compatible/incompatible foregrounds in the query bounding box (yellow) on background, in which compatibility label is provided
by human annotators.



Figure 3. Comparing our method with the most competitive baseline FFR [8] for each category in our S-FOSD and R-FOSD datasets.

grounds as well as 200 foregrounds per category. Each pair
of background and foreground is evaluated by three human
annotators in terms of their compatibility. Then, only the
foreground objects that all annotators label as compatible
are considered to be compatible. The resulting dataset con-
tains 4∼190 compatible foregrounds per background. We
present the average number of compatible foregrounds per
background in a category in Figure 1.

1.6. Visualization Examples

In Section 3 of the main text, we have introduced the
pipeline of constructing our S-FOSD and R-FOSD datasets.
Here we present more examples of these two datasets in Fig-
ure 2. Similar to Figure 2 of the main text, we show source
image with instance segmentation mask, background, fore-
ground, and synthetic composite images for one example
of S-FOSD dataset. As demonstrated in Figure 2 (a), the
foreground and background in S-FOSD dataset are diverse
enough to cope with various real-world scenarios. For each
example of R-FOSD dataset, we show source image, back-
ground, and real composite images produced by inserting
foreground into the given background image. Recall there
are 200 candidate foregrounds for each background. We
randomly select three compatible foregrounds and three in-
compatible foregrounds to composite with the background,
in which compatibility labels are acquired from three hu-
man annotators. By observing the examples in Figure 2 (b),
we can roughly verify the validness of the compatibility an-
notations in our R-FOSD dataset.

2. Implementation Details
Our method is implemented using PyTorch [6] and dis-

tributed on NVIDIA RTX 3090 GPU. We use the Adam
optimizer [3] with a fixed learning rate of 1e−5 to train
our model for 50 epochs. Following [10, 12], we adopt
VGG-19 [7] pretrained on ImageNet [1] as backbone net-
work for our discriminator D and encoders {Ef , Eb}. Be-
fore being fed into networks, both composite image and
background image are directly resized to 224 × 224, while
foreground image is first padded with white pixels to be a

square image and then resized to 224 × 224. In this way,
the composite feature map Fc, background and foreground
feature maps Fb,Ff have the same shape 7× 7× 512, i.e.,
h = w = 7, c = 512. We implement the knowledge dis-
tillation module Ed with two convolution+relu operations.
For discriminator D and distillation module Ed, we append
a fully-connected layer with a sigmoid function as binary
classifier.

Recall we generate positive and negative foregrounds
from S-FOSD dataset by using a pretrained classifier (see
Section 4.1 of the main text). When training on S-FOSD
dataset, we adopt the same 1:10 ratio of positive and nega-
tive foregrounds per background for different models. Ad-
ditionally, we set the margin m in Eqn. (2) of the main text
as 0.1, and λkd, λcls in Eqn. (5) of the main text as 1 via
cross-validation.

3. Comparison on Different Categories
In Table 1 of the main text, we have compared with dif-

ferent baseline methods [9, 11, 10, 8] on our S-FOSD and
R-FOSD datasets, in which one metric is obtained by av-
eraging over all categories. This comparison demonstrates
that our method performs more favorably against previous
baselines. To take a close look at the superiority of our
method, we evaluate our model and the most competitive
baseline (i.e., FFR [8]) on each single category of our S-
FOSD and R-FOSD datasets, in which we report their per-
formance in term of Recall@1 and mAP-20, respectively.
As demonstrated in Figure 3 (a), our method can generally
achieve better results than FFR on different categories of
S-FOSD dataset. In Figure 3 (b), it can be seen that our
model also beats FFR in most categories. These results fur-
ther prove the improvement of our method over previous
baseline methods on FOS task.

4. More Qualitative Results
To better demonstrate the effectiveness of our method,

we provide additional qualitative results of our method and
baseline methods [9, 11, 10, 8] on our S-FOSD and R-
FOSD datasets in Figure 4 and Figure 5, respectively. Given



Figure 4. Qualitative comparison of different methods on our S-FOSD dataset. For a background image with query bounding box, which is
filled by mean image pixel, we show several rows of the retrieval results from different methods, from top to bottom: CFO [9], UFO [10],
GALA [12], FFR [8], and ours.



Figure 5. Qualitative comparison of different methods on our R-FOSD dataset. Each example contains a background image with query
bounding box (yellow) and several rows of the retrieval results from different methods, from top to bottom: CFO [9], UFO [10], GALA [12],
FFR [8], and ours. Additionally, we mark the foreground that is assigned with compatible (resp., incompatible) label by human annotators
using green (resp., red) box.



Figure 6. Applying our method to FOS from 32 categories of fore-
grounds. In each row, our method retrieves foregrounds for the
background on the left and places the retrieved foreground in the
query bounding box (yellow) on background to get composite im-
age.

a background image with query bounding box, we show the
composite images that are generated by placing the top-5
foregrounds of different methods in the query bounding box
on the given background. The visualized results demon-
strate that our method can generally find compatible fore-
grounds by considering both semantic and geometric fac-
tors. For example, the background on the left of the third
row in Figure 4 has a sloping road, indicating that inserted
“bus” should have a matching viewpoint, so as to generate a
realistic composite image. Among the compared methods,
only our method works well by returning compatible fore-
grounds with similar viewpoint. In the top-right example of
Figure 5, our method retrieves more composite foregrounds
(i.e., bird) than other baselines for the given background
scene, in which a flying “bird” appears more suitable to be
placed on the background river. In summary, these qual-
itative comparisons further verify the effectiveness of the
proposed method for FOS.

5. Retrieval from Different Categories

In this work, we focus on searching compatible fore-
grounds from specified category for a given background,
which is referred to as constrained foreground object search.
In real-world application scenario, user may retrieve fore-
ground from different categories, which is referred to as
unconstrained foreground object search. To investigate the
performance of our model in this scenario, we employ our
model to search compatible foregrounds from 32 categories
in our R-FOSD dataset. It is worth noting that the retrieval
process of our method is unchanged, which means that the
model ranks different foregrounds by predicted compatibil-
ity scores. We provide several examples in Figure 6, which
demonstrate that our method is capable of generating rea-
sonable results in this scenario as well.

Figure 7. Evaluating our method on new categories that have not
been seen during training. In each row, the left is one background
image with query bounding box (yellow) in R-FOSD dataset and
the other are composite images with retrieved foregrounds by our
method, in which compatible (resp., incompatible) foreground is
marked with green (resp., red) box.

6. Generalization to New Categories

To investigate the generalization ability of our learnt
compatibility knowledge, we test our model on new cate-
gories that have not been seen during training. Specifically,
we divide existing 32 categories of our S-FOSD dataset into
five supercategories (e.g., animal, carrier). We then ran-
domly choose one item from each supercategory to build
the test set and the rest forms the training set. After training,
we evaluate our model on our R-FOSD dataset that adopts
the same foregrounds as the test set of S-FOSD dataset.
As shown in Figure 7, given a query background of R-
FOSD dataset, our method typically can find compatible
foregrounds (green box) from new categories even without
training on these categories.

7. Hyper-parameter Analyses

Recall that we have three hyper-parameters in the main
text, i.e., margin m for triplet loss in Eqn. (2), distilla-
tion loss weight λkd, and classification loss weight λcls in
Eqn. (5), which are respectively set as 0.1, 1, 1 via cross-
validation by splitting 20% training samples of our S-FOSD
dataset as validation set. Besides, the ratio of positive and
negative foregrounds per background is also considered as
a hyper-parameter. In this section, we study the perfor-
mance variance of our method when varying those hyper-
parameters, in which we evaluate on the test set of S-FOSD
dataset and report results of Recall@k (R@k) in Figure 8.



Figure 8. Performance variation of our method with different hyper-parameters m in Eqn. (2), λkd, λcls in Eqn. (5) of the main text on our
S-FOSD dataset. The dashed vertical lines denote the default values used in our other experiments.

Margin for Triplet Loss. It is worth mentioning that our
triplet loss is calculated on the cosine distance between fore-
ground feature and background feature, which means that
the margin is meaningful only if its value lies in (0, 1).
To evaluate the impact of different margins m for triplet
loss, we vary m in the range of [0, 0.8], generating results
shown in Figure 8 (a), in which we report the results of
Recall@1 and Recall@5 on S-FOSD dataset. By compar-
ing the results without triplet loss (m = 0) and the results
with m = 1, we can see a clear gap between their perfor-
mance, demonstrating the necessity of using triplet loss to
learn discriminative foreground/background feature. When
m varies in the range of [0.01, 0.2], Recall@1 is in the range
of [77.97, 79.06] and Recall@5 is in the range of [94.06,
94.84], which indicates that our model is robust when set-
ting m in a reasonable range.

Distillation Loss Weight. With m = 0.1, we evaluate
the results of our model adopting different distillation loss
weights λkd in Figure 8 (b). When λkd = 0, the knowledge
distillation module essentially degrades to a classifier and
the resultant model is equivalent to the row 3 in Table 2 of
the main text. In this case, the distilled feature cannot learn
compatibility knowledge from composite image feature and
using such feature may affect the prediction of foreground-
background compatibility, leading to inferior performance.
When λkd ≤ 1, the performance increases as λkd increases,
which implies that adding feature distillation could bene-
fit the compatibility prediction via distilled feature. When
λkd becomes larger than 1, the performance begins to drop.
Moreover, we find that the model can achieve satisfactory
results when λkd ranges from 0.1 to 10.

Classification Loss Weight. By setting m = 0.1 and
λkd = 1, we further evaluate the performance of our model
with different classification loss weights λcls, the results of
which are shown in Figure 8 (c). For λcls = 0, the predicted
compatibility scores cannot be guaranteed and thus we esti-
mate the compatibility via foreground-background feature
similarity. It can be seen that the model with λcls = 1
clearly outperforms the model with λcls = 0, which con-
firms the advantages of the proposed method over the two

Pos Neg R@1↑ R@5↑ R@10↑ R@20↑
1 1 1 48.75 80.00 90.00 95.63
2 1 5 77.34 94.00 96.44 99.38
3 1 10 79.06 94.84 97.34 99.38
4 1 20 80.72 95.23 98.50 99.56
5 5 10 65.63 87.03 93.59 97.19
6 10 10 46.25 76.09 86.25 93.59

Table 2. The performance of our method trained using different
ratios of positive and negative foregrounds per background on our
S-FOSD dataset. “Pos” and “Neg” indicate the numbers of posi-
tive and negative foregrounds per background, respectively.

encoders. Moreover, Recall@1 is in the range of [78.42,
79.06] and Recall@5 is in the range of [94.22, 94.84] when
λcls varies in the range of [0.1, 10], which implies that our
model performs robust to λcls when setting λcls in a rea-
sonable range.
Ratio of Positive and Negative Foregrounds. Recall we
generate positive and negative foregrounds from S-FOSD
dataset by using a pretrained classifier in Section 4.1 of
the main text. Then we set the ratio of positive to nega-
tive foregrounds per background as 1:10 for different mod-
els when training on S-FOSD dataset. To study the impact
of training with different ratios, we vary the ratio and re-
port the results of our method in Table 2. In row 1∼4, we
use the only ground-truth positive foreground for one back-
ground and observe that the performance increases as the
number of negative foreground increases, verifying the ef-
fectiveness of the selected negative foregrounds by the pre-
trained classifier. Based on row 3, we keep the number
of negative foregrounds at 10 and increase the number of
positive foregrounds in row 5 and 6, from which we can
observe the significant performance drop. This may be at-
tributed to the fact that the set of positive foregrounds iden-
tified by the classifier still contains some implausible sam-
ples. In summary, although using more training foregrounds
per background may achieve better results, this would sig-
nificantly slow down the training speed. To seek for the
trade-off between training speed and model performance,



Figure 9. Failure cases of our method produced on R-FOSD
dataset. Given a background image with query bounding box (yel-
low) on the left of a row, we composite each of the returned fore-
grounds by our method with the given background and present
them on the right, in which the compatible (resp., incompatible)
foregrounds are indicated with green (resp., red) boxes.

we finally adopt the 1:10 ratio of positive and negative fore-
ground per background for all baselines and our method in
experiments.

8. Discussion on Limitation
Although our method is able to find compatible fore-

grounds for most query backgrounds, it may fail on some
challenging cases. For example, as shown in Figure 9 (a),
all the retrieved foregrounds by our method are upper body
images with non-frontal posture, yet most of them (red
box) are different from the compatible one (green box) on
boundary truncation and hand action, yielding implausible
composite images. This can be attributed to the fact that
our model mainly considers coarse-grained foreground re-
trieval, which makes it tougher to find foregrounds with
particular attributes. In addition, as discussed in [12], the
search space of FOS is bounded by the gallery of fore-
grounds and thus there may be a few or even no perfectly
suitable foreground for a given background. In Figure 9 (b),
we present a such case where our method fails to return sat-
isfactory results, because there are only a few compatible
foregrounds for the given background in database.
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