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Abstract

In the supplementary document, we first present the im-
plementation details in Sec. A. Second, we provide the ex-
perimental details in Sec. B. Finally, we show more visual-
ization results in Sec. C. Please also refer to the project
page for video results. Our project page: https://
getavatar.github.io/.

A. Implementation Details
A.1. Network Architectures

Triplane. Following EG3D [3] and GET3D [5], we adopt
the StyleGAN2 [8] generator to generate the triplane repre-
sentation. Specifically, the backbone (StyleGAN2 [8] gen-
erator) produces two triplanes: the texture triplane and the
geometry triplane. We employ two conditional layers for
each style block to generate geometry features and texture
features separately [11, 5]. For each triplane, the backbone
outputs a 96-channel output feature map that is then re-
shaped into three axis-aligned feature planes, each of shape
256× 256× 32.
Mapping Network. Both the geometry and texture map-
ping network are 8-layer MLPs network with leakyReLU
as the activation function, and the dimension of the hidden
layers is 512. We sample the input latent code zgeo ∈ R512

and ztex ∈ R512 from a 512-dimensional standard Gaussian
distribution.
Discriminator. We use 3 StyleGAN2-based [8] discrim-
inators to perform adversarial training on RGB images,
2D masks, and normal maps, respectively. Following
EG3D [3], we condition all the discriminators on the cam-
era parameters by modulating the blocks of the discrimina-
tor via a mapping network.
SMPL-guided Deformation. SMPL defines a deformable
mesh M(β, θ) = (V,S), where θ denotes the pose pa-

*Equal contribution.

rameter, β represents the shape parameter, V is the set of
Nv = 6890 vertices, and S is the set of linear blend skin-
ning weights assigned for each vertex. The template mesh
of SMPL can be deformed by linear blend skinning [10]
with θ and β. Specifically, the linear blend skinning process
can transform a vertex from the canonical pose to the target
pose by the weighted sum of skinning weights that repre-
sent the influence of each bone and transformation matri-
ces. In this work, we generalize the linear blend skinning
process [10] of the SMPL model from the coarse naked
body to our generated clothed human. The core idea is
to associate each point with its closest vertex on the de-
formed SMPL mesh M(θ, β), assuming they undergo the
same kinematic changes between the deformed and canon-
ical spaces. Specifically, for a point xd in the deformed
space, we first find its nearest vertex v∗ in the SMPL mesh.
Then we use the skinning weights of v∗ to un-warp xd to
xc in the canonical space:

xc =

 Nj∑
i=1

s∗i ·Bi(θ, β)

−1

· xd, (1)

where Nj = 24 is the number of joints, s∗i is the skinning
weight of vertex v∗ w.r.t. the i-th joint, Bi(θ, β) is the bone
transformation matrix of join i. Therefore, for any point
xd in the deformed space, we can determine the SDF value
d(xd), color c(xd), and normal n(xd) as:

d(xd) = d(xc), c(xd) = c(xc),

n(xd) =

 Nj∑
i=1

s∗i ·Ri(θ, β)

 · n(xc),
(2)

where d(xc), c(xc), n(xd) are the SDF value, color, and
normal at the point xc in the canonical space and Ri(θ, β)
is the rotation component of Bi(θ, β).
Differentiable Marching Tetrahedra. To explicitly model
the body surface, we extract a triangular mesh of the gener-
ated human from the tetrahedral grid via the differentiable
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marching tetrahedra algorithm [17]. For the tetrahedra grid,
the marching tetrahedra algorithm [17] finds the surface
boundary based on the sign of the signed distance value for
vertices within each tetrahedron. If two vertices i and j in
the edge of a tetrahedron have opposite signs for the signed
distance value (sign(di) ̸= sign(dj)), we can determine
the mesh face vertice by a linear interpolation between ver-
tices i and j.

A.2. Training Protocol

Hyperparameters. We use Adam optimizer [9] with β1 =
0, β2 = 0.99, and the batch size of 32 for optimization.
The learning rate is set to 0.002 for both the generator
and the discriminator. Following StyleGAN2 [8], we use
lazy regularization to stabilize the training process by ap-
plying R1 regularization to discriminators every 16 train-
ing steps. Here we set the regularization weight to 10 for
THUman2.0 [18] and 20 for RenderPeople [1]. For the loss
function, we set λeik = 0.001 for the eikonal loss, and
λce = 0.01 for the cross-entropy loss of SDF regulariza-
tion.

Runtime Analysis. At training time, for images at 5122 res-
olution, we train the model on 8 NVIDIA Tesla V100 GPUs
using a batch size of 32 for 1 day. For images at 10242 res-
olution, the models are trained on 8 NVIDIA A100 GPUs
for 1 day, with a batch size of 32. At test time, we evaluate
the rendering speed in frames per second (FPS) at different
resolutions. In particular, our model runs at 5122 resolution
with 17FPS and 10242 resolution with 14FPS on a single
NVIDIA Tesla V100 GPU.

B. Experimental Details

B.1. Datasets

We conduct experiments on two high-quality 3D human
scan datasets: THUman2.0 [18] and RenderPeople [1]. For
every scan on these datasets, we render 100 RGB images,
2D silhouette masks, and normal maps with randomly-
sampled camera poses. Specifically, we sample the pitch
and yaw of the camera pose from a uniform distribution
with the horizontal standard deviation of 2π radians and the
vertical standard deviation of 0.1 radians. Besides, we use a
fixed radius of 2.3 and the fov angle of 49.13◦ for all cam-
era poses. For the SMPL parameters, we adopt the official
provided SMPL fitting results for THUman2.0 [18], and the
SMPL fitting results provided by AGORA dataset [15] for
RenderPeople [1].

https://github.com/ytrock/THuman2.0-Dataset
https://agora.is.tue.mpg.de/

B.2. Evaluation Metrics

B.2.1 Texture Evaluation

To evaluate the visual quality and diversity of the generated
RGB images, we compute Frechet Inception Distance [6]
between 50k generated RGB images and all real RGB im-
ages: FIDRGB . We adopt the FID implementation provided
in the StyleGAN3 codebase.

B.2.2 Geometry Evaluation

We evaluate the geometry quality of generated human
avatars from 3 aspects: the quality of surface details, the
correctness of generated poses, and the plausibility of gen-
erated depth. First, to evaluate the quality of generated sur-
face details, we measured Frechet Inception Distance [6] the
normal maps: FIDnormal, between 50k generated normal
maps and all real normal maps. We adopt the widely-used
implementation of FID with a pretrained Inception v3 fea-
ture extractor. Second, to measure the correctness of gener-
ated poses, we employ the Percentage of Correct Keypoints
(PCK) metric, as used in previous animatable 3D human
generation methods [13, 2, 7, 19]. To compute PCK, we
first use a human pose estimation model to detect the hu-
man keypoints on both the generated and real images with
the same camera and SMPL parameters. Then, we calcu-
lated the percentage of detected keypoints on the generated
image within a distance threshold on the real image. Ad-
ditionally, we evaluate the depth plausibility by comparing
the generated depths with the pseudo-ground-truth depth es-
timated from the generated images by PIFuHD [16].

B.2.3 Baselines

When training the 3D-aware image synthesis [14, 5, 3]
models, we follow the official implementations to train the
model with only parameters. We also visualize the gener-
ated RGB images and normal maps in Fig. ??.
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https://github.com/NVlabs/stylegan3
https://github.com/NVlabs/stylegan3
https://api.ngc.nvidia.com/v2/models/nvidia/

research/stylegan3/versions/1/files/metrics/
inception-2015-12-05.pkl

https://github.com/nogu-atsu/ENARF-GAN
https://github.com/open-mmlab/mmpose
https://github.com/facebookresearch/pifuhd
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C. Additional Results
We show more more generated images of the pro-

posed method on THUman2.0 [18] (Fig. 1) and RenderPeo-
ple [1] (Fig. 2). We provide more transfer learning visu-
alization results on in-the-wild datasets: DeepFashion [12]
(Fig. 3) and SHHQ [4] (Fig. 4). In addition, we also make a
comparison with the images generated by 2D GAN model
StyleGAN2 [8] (Fig. 5). Please also refer to the supplemen-
tary video and our project page for more results.

https://getavatar.github.io/


Figure 1: Images synthesized by GETAvatar on the THUman2.0 [18] dataset.



Figure 2: Images synthesized by GETAvatar on RenderPeople [1].



Figure 3: Images synthesized by GETAvatar on DeepFashion [12].

Figure 4: Images synthesized by GETAvatar on SHHQ [4].



StyleGAN2 Ours

Figure 5: Comparison of 2D StyleGAN2 [8] with our GETAvatar.
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