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A. SLAM Configuration
A.1. Rendering Network Details.

Architecture. Our rendering networks consist of one SDF network and one color network as shown in Fig. A. For multi-
resolution hash encodings, we set the feature dimensions and maximum entries per level to 2 and 219 respectively. Totally,
there are 16 levels of different resolutions ranging from 16 to 4096. The size of hidden units in the SDF network and color
network are 32 and 64 respectively.

Training. We use AdamW [4] as optimizer. The learning rate is set to 10−2 for learnable hash encodings and 10−3 for
parameters of the SDF network and color network.
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Figure A: Details of rendering networks.

B. More Qualitative Results
We provide detailed results on ScanNet [3], EuRoC [1] and Replica [5] datasets on Figs. B to D respectively.

https://youmi-zym.github.io/projects/GO-SLAM/
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Figure B: Qualitative results on ScanNet dataset [5]. Our GO-SLAM predicts globally consistent 3D reconstruction with
monocular or RGB-D input at real-time speed. While NICE-SLAM [7] suffers from accumulated errors in trajectory and
distortion in 3D models.
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Figure C: Qualitative results on EuRoC dataset [1]. DROID-SLAM [6] reconstructions obtained with TSDF-Fusion [2].
Compared to DROID-SLAM, our reconstructions are much cleaner and more complete.



O
ur

s
M

on
o.

GT
N

IC
E-

SL
AM

RG
B-

D
O

ur
s 

RG
B-

D

office2 office3 room0 room1 room2

Figure D: Qualitative results on Replica dataset [5]. Our GO-SLAM predicts dense 3D reconstruction with monocular or
RGB-D input at real-time speed. While NICE-SLAM [7], which can only work with depth input, takes hours (≪ 1 FPS) to
get the reconstruction.
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