
GPFL: Simultaneously Learning Global and Personalized Feature Information for
Personalized Federated Learning

Jianqing Zhang1, Yang Hua2, Hao Wang3, Tao Song1

Zhengui Xue1, Ruhui Ma1*, Jian Cao1, Haibing Guan1

1Shanghai Jiao Tong University 2Queen’s University Belfast 3Louisiana State University

{tsingz, songt333, zhenguixue, ruhuima, cao-jian, hbguan}@sjtu.edu.cn

Y.Hua@qub.ac.uk, haowang@lsu.edu

A. Convergence Analysis

Here, we empirically show the convergence of GPFL.
Recall that our learning objective is

{W1, . . . ,WN} = argmin G(F1, . . . ,FN ), (1)

where G(F1, . . . ,FN ) =
∑

i∈[N ] niFi. In Figure 1, we
visualize a more detailed loss curve of GPFL on Amazon
Review dataset using the 3-layer MLP in the feature shift
setting. As the FL process continues, the loss values of G be-
fore and after the local model training become the same, and
the loss values do not change for more than 100 iterations,
revealing the convergence of GPFL.

0 50 100 150 200
Iterations

0.5

1.0

1.5

Tr
ai

ni
ng

 L
os

s

Figure 1. The training loss curve of GPFL on Amazon Review
dataset using the 3-layer MLP in the feature shift setting. The red
circles and green cubes represent the loss value of G before local
learning and after local learning, respectively. Best viewed in color.

B. Results on FMNIST

The results in Table 1 show the superiority of GPFL on
FMNIST when compared to other baselines.

*Corresponding author.

Table 1. The test accuracy (%) on FMNIST in label skew settings.

Settings Pathological setting Practical setting

FedAvg 97.93±0.05 98.81±0.01
FedProx 98.01±0.09 98.82±0.01

Per-FedAvg 99.63±0.02 98.90±0.05
pFedMe 99.75±0.02 99.52±0.02
Ditto 99.81±0.00 99.64±0.00
FedPer 99.70±0.02 99.47±0.04
FedRep 99.77±0.03 99.48±0.02
FedRoD 99.90±0.00 99.66±0.00
FedPHP 99.73±0.00 99.58±0.00
FedProto 99.85±0.01 99.63±0.03

GPFL 99.92±0.07 99.72±0.04

C. Various Statistical Heterogeneity

Table 2. The test accuracy (%) on TINY regarding various statistical
heterogeneity.

β = 0.01 β = 0.5

FedAvg 15.70±0.46 21.14±0.47
FedProx 15.66±0.36 21.22±0.47

Per-FedAvg 39.39±0.30 16.36±0.13
pFedMe 41.45±0.14 17.48±0.61
Ditto 50.62±0.02 18.98±0.05
FedPer 51.83±0.22 17.31±0.19
FedRep 55.43±0.15 16.74±0.09
FedRoD 49.17±0.06 23.23±0.11
FedPHP 48.63±0.02 21.09±0.07
FedProto 50.49±0.39 16.57±0.09

GPFL 56.62±0.18 26.67±0.34

1



Table 3. The test accuracy (%) of variants of CoV on Tiny-ImageNet in practical label skew setting (β = 0.1). “w/o” is short for “without”,
and “Affine” is short for “affine transformation in LN”.

GPFL FC Layers LN Activation Function

/ 2 FC 3 FC w/o LN w/o Affine ELU Tanh Sigmoid

4-layer CNN 43.37 44.16 44.32 43.64 34.99 43.95 43.97 43.79
ResNet-18 43.70 43.82 43.97 43.04 43.22 42.92 43.85 43.36

To further evaluate our GPFL under various statistical
heterogeneity, we conduct additional two experiments by
varying the degree of heterogeneity with different β in the
practical label skew settings on TINY. The smaller the β
is, the more heterogeneous the setting is. The range of
β ∈ {0.01, 0.1, 0.5} is widely used for CV tasks in FL [2, 1].
We have shown the results for β = 0.1 in the main body, and
only show the results for β ∈ {0.01, 0.5} here.

According to Table 2, the superiority of pFL methods
is more evident in more heterogeneous settings, where less
global information exists among clients. However, even in
the extremely heterogeneous setting with β = 0.01, clients
can still benefit from global information to facilitate their
local model training. For example, using global parame-
ter information, Ditto still achieves higher accuracy than
pFedMe. In the scenario with a relatively large β and mod-
erate heterogeneity, most pFL methods perform worse than
the traditional FL methods, as they excessively focus on the
client side. FedRoD performs well with a large β in the label
skew settings because of its BSM loss. GPFL still performs
the best since we train the GCE in an end-to-end manner, so
GPFL can adapt to different environments.

D. Time Cost

Table 4. The time cost on Tiny-ImageNet using ResNet-18 in the
practical label skew setting (β = 0.1).

Total time Iterations Avg. time

FedAvg 365 min 230 1.59 min
FedProx 325 min 163 1.99 min

Per-FedAvg 121 min 34 3.56 min
pFedMe 1157 min 113 10.24 min
Ditto 318 min 57 5.58 min
FedPer 83 min 43 1.92 min
FedRep 471 min 115 4.09 min
FedRoD 87 min 50 1.74 min
FedPHP 264 min 65 4.06 min
FedProto 138 min 25 5.52 min

GPFL 171 min 75 2.28 min

We report the total time and the iteration amount required

for convergence in Table 4. Some pFL methods cost rela-
tively more total time than traditional FL methods, such as
pFedMe and FedRep. As for the average time per iteration
(avg. time for short), all the pFL methods cost more time as
they introduce more operations for personalized tasks during
local training. GPFL takes relatively little time due to the
small computational overhead of embedding training.

E. CoV Design

By default, CoV consists of an FC layer, a ReLU activa-
tion, and a layer-normalization layer (denoted by LN). Here,
we investigate the effect of different structures of CoV on
GPFL by changing the number of FC layers, the activation
function, and the LN. The accuracy results with an underline
are higher than the one of GPFL, as shown in Table 3.

We found that the default structure of CoV in GPFL is
not the best. Therefore, we can further improve GPFL by
designing other structures for CoV. With more FC layers
added into CoV, the accuracy on both the 4-layer CNN
and ResNet-18 increases. However, more FC layers intro-
duce more computational costs for the client. There is an
accuracy-computation trade-off. We can add the FC layer
appropriately on clients with sufficient computing resources.
As for LN, removing it improves the performance of GPFL
on the 4-layer CNN but not on ResNet-18. This difference
also exists when we remove the affine transformation in LN.
As for the activation function, using Tanh1 instead of ReLU2

improves the accuracy of GPFL on both the 4-layer CNN
and ResNet-18, whereas ELU3 and Sigmoid4 do not.

1https://pytorch.org/docs/stable/generated/
torch.nn.Tanh.html

2https://pytorch.org/docs/stable/generated/
torch.nn.ReLU.html

3https://pytorch.org/docs/stable/generated/
torch.nn.ELU.html

4https://pytorch.org/docs/stable/generated/
torch.nn.Sigmoid.html



F. Experimental Details
F.1. Additional Implementation Details

We conduct experiments using six public datasets:
Fashion-MNIST (FMNIST)5, Cifar1006, Tiny-ImageNet7

(100K images with 200 categories), AG News8 (a news clas-
sification dataset with four categories, more than 30K sam-
ples per category), Amazon Review9 (a sentimental analysis
dataset including four domains: Books, DVDs, Electronics
and Kitchen Appliances), and Human Activity Recognition
(HAR) dataset10, where the sensor signal (accelerometer
and gyroscope) data is collected from 30 users who perform
six activities (WALKING, WALKING_UPSTAIRS, WALK-
ING_DOWNSTAIRS, SITTING, STANDING, LAYING)
wearing a smartphone (Samsung Galaxy S II) on the waist.
Specifically, this dataset contains 9 dimensions of the in-
puts: (body_acc_, body_gyro_ and total_acc_) on the x, y,
and z axes. On HAR, following previous work [3], we con-
sider each dimension as a channel and use a HAR-CNN11

to perform a 1D convolution on them and flat the output
of each channel to a unified DNN layer after convolution
and pooling. We run all experiments on a machine with two
Intel Xeon Gold 6140 CPUs (36 cores), 128G memory, eight
NVIDIA 2080 Ti GPUs, and CentOS 7.8.

F.2. Hyperparameters

For hyperparameter tuning, we use grid search to find
optimal hyperparameters, including λ and µ. Specifically,
grid search is performed in the following search space:

• λ: 0, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10

• µ: 0, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10

In this paper, we set λ = 10−2, µ = 10−1 for the 4-
layer CNN and 3-layer MLP, set λ = 10−4, µ = 0 for the
ResNet-18 and the fastText, and set λ = 10−2, µ = 1 for
HAR-CNN.

F.3. Number of FC Layers in the Personalized Head

Although we split the given backbones into a feature
extractor and a personalized head following FedRep, we do

5https://pytorch.org/vision/stable/datasets.
html#fmnist

6https://pytorch.org/vision/stable/datasets.
html#cifar

7http://cs231n.stanford.edu/tiny-imagenet-200.
zip

8https://pytorch.org/text/stable/datasets.html#
ag-news

9https://github.com/FengHZ/KD3A#
install-datasets

10https://archive.ics.uci.edu/ml/datasets/human+
activity+recognition+using+smartphones

11https://github.com/jindongwang/
Deep-learning-activity-recognition/blob/master/
pytorch/network.py

Table 5. The test accuracy (%) on the 4-layer CNN and the 3-layer
MLP in the practical label skew setting (β = 0.1). “nFC” is short
for “number of FC layers in the personalized head”. Recall that K
is the dimension of the feature vector.

Backbone 4-layer CNN 3-layer MLP

Dataset FMNIST Cifar100 Amazon Review

nFC 1 2 1 2 1 2 3

K 512 1024 512 1600 100 500 1000

Acc. 99.72 98.89 61.86 58.67 89.32 88.84 88.26

not modify the structure of the backbones, such as adding or
deleting layers. Here, we study the effect of the number of
FC layers in the personalized head on the 4-layer CNN and
the 3-layer MLP, as shown in Table 5. Note that once we
add an FC layer in the backbone to the personalized head,
this FC layer is removed from the feature extractor so that
the combination of the feature extractor and the personalized
head is still the backbone.

According to Table 5, the test accuracy decreases as the
nFC increases. More nFC means fewer layers in the feature
extractor, which reduces the feature extraction ability of the
feature extractor, thus reducing the performance of GPFL.
Besides, a larger K also requires more memory to store
trainable category embeddings. Therefore, we set nFC to 1
unless explicitly mentioned.

G. Societal Impacts
As mentioned in the main body, pFL has three features:

privacy-preserving, collaborative learning, and personaliza-
tion. We devise GPFL based on the pFL scheme, so GPFL
also has these three features. Moreover, the excellent perfor-
mance in terms of scalability, fairness, stability, and privacy
demonstrates the ability of GPFL to meet the needs of mas-
sive clients in complex real-world environments.

H. Data Distribution Visualization
We illustrate the data distributions (including training and

test data) in the experiments here.

References
[1] Qinbin Li, Bingsheng He, and Dawn Song. Model-Contrastive

Federated Learning. In CVPR, 2021. 2
[2] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi.

Ensemble Distillation for Robust Model Fusion in Federated
Learning. In NeurIPS, 2020. 2

[3] Ming Zeng, Le T Nguyen, Bo Yu, Ole J Mengshoel, Jiang
Zhu, Pang Wu, and Joy Zhang. Convolutional neural networks
for human activity recognition using mobile sensors. In 6th
international conference on mobile computing, applications
and services, pages 197–205. IEEE, 2014. 3



0 1 2 3 4 5 6 7 8 9 10111213141516171819
Client IDs

0
1
2
3
4
5
6
7
8
9

C
la

ss
 ID

s

(a) FMNIST

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Client IDs

0

20

40

60

80

100

C
la

ss
 ID

s
(b) Cifar100

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Client IDs

0

50

100

150

200

C
la

ss
 ID

s

(c) Tiny-ImageNet

Figure 2. The data distribution of each client on FMNIST, Cifar100, and Tiny-ImageNet, respectively, in the pathological label skew settings.
The size of a circle represents the number of samples.

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Client IDs

0
1
2
3
4
5
6
7
8
9

C
la

ss
 ID

s

(a) FMNIST

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Client IDs

0

20

40

60

80

100

C
la

ss
 ID

s

(b) Cifar100

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Client IDs

0

50

100

150

200

C
la

ss
 ID

s

(c) Tiny-ImageNet

Figure 3. The data distribution of each client on FMNIST, Cifar100, and Tiny-ImageNet, respectively, in practical label skew settings
(β = 0.1). The size of a circle represents the number of samples.

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Client IDs

0

50

100

150

200

C
la

ss
 ID

s

(a) β = 0.01

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Client IDs

0

50

100

150

200

C
la

ss
 ID

s

(b) β = 0.5

Figure 4. The data distribution on all clients on Tiny-ImageNet in two additional practical label skew settings. The size of a circle represents
the number of samples. The degree of heterogeneity decreases as β in Dir(β) increases.



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Client IDs

0

20

40

60

80

100

C
la

ss
 ID

s

(a) 30 clients

0 10 20 30 40 50
Client IDs

0

20

40

60

80

100

C
la

ss
 ID

s

(b) 50 clients

0 20 40 60 80 100
Client IDs

0

20

40

60

80

100

C
la

ss
 ID

s

(c) 100 clients

Figure 5. The data distribution of each client on Cifar100 in the practical label skew setting (β = 0.1) with 30, 50, and 100 clients,
respectively. The size of a circle represents the number of samples.



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Client IDs

0

1

2

3

C
la

ss
 ID

s

(a) β = 0.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Client IDs

0

1

2

3

C
la

ss
 ID

s

(b) β = 1

Figure 6. The data distribution of each client on AG News in the practical label skew settings. The size of a circle represents the number of
samples.

0 1 2 3
Client IDs

0

1

C
la

ss
 ID

s

Figure 7. The data distribution of each client on Amazon Review in feature shift settings. The size of a circle represents the number of
samples.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Client IDs

0

1

2

3

4

5

C
la

ss
 ID

s

Figure 8. The data distribution of each client on HAR in real-world settings. The size of a circle represents the number of samples.


