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Figure 1: Detailed architecture of our scale-aware network,
where MSFF 16, 32, 64, and 128 indicate the MSFF block
composed of a 4-layer MLP and a 1-layer DCN with the
channel set to 16, 32, 64, and 128, respectively.

1. Network Details
The detailed structure of our Scale-Aware Network

(SAN) is shown in Fig. 1. The encoders for blurry frames
and events are implemented with the same network struc-
ture. At each scale, the encoded multi-modal features are
fused using the corresponding Multi-Scale Feature Fusion
(MSFF) block. Finally, the latent image is restored by de-
coding the fused features.

2. Dataset Details
2.1. Multi-scale Real-world Blurry Dataset

This section provides more details on our proposed
Multi-scale Real-world Blurry Dataset (MS-RBD), includ-
ing camera setup, data alignment, and dataset composition.

Setup. The MS-RBD is collected with the camera
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Figure 2: Illustration of our capture system, which is imple-
mented with a beam splitter connecting a DAVIS346 event
camera and a FLIR BlackFly S RGB camera. The system is
mounted on a stabilizer to control the camera motion.

setup shown in Fig. 2, where a DAVIS346 event camera
(346×260) is connected with a FLIR BlackFly S global
shutter RGB camera (2048×1536) using a beam splitter
(50% splitting). The camera system is mounted on a sta-
bilizer for convenient control of camera motion.

Alignment. To ensure the same field of view of events
and frames, we perform alignment using a homography es-
timated by matching SIFT features [1], which is computed
using the gray-scale Active Pixel Sensor (APS) frames out-
put from the DAVIS346 camera and the RGB frames output
from the FLIR camera. RANSAC is also employed to filter
false matches in the homography estimation process. After
alignment, the events and the RGB frames are cropped to
sizes 288×192 and 1152×768, respectively.

Composition. Our MS-RBD contains 32 sequences
composed of 22 indoor and 10 outdoor scenes. Each se-
quence contains 60 RGB 1152×768 blurry frames and the
concurrent 288×192 events without ground-truth images.
During data collection, the frame rate of the FLIR camera
is set to 30 and 15 FPS to imitate the motion blur of dif-
ferent temporal scales, and the motion blur caused by both
dynamic targets and camera ego-motion (from simple rota-
tion to complex random motion) is considered in MS-RBD.
For self-supervised methods, we choose 5 and 3 sequences



Table 1: Overview of our MS-RBD. #Event indicates the total number of events in the sequence. FPS is the frame rate of the
FLIR camera. Dynamic/Static shows whether the target scene is dynamic or static.

Scene Sequence Train/Test #Event (K) FPS Dynamic/Static Camera Motion

Indoor

Badminton Train 8096 15 Static Rotation
Book Train 12128 15 Static Rotation

Book2 Train 3647 15 Dynamic No motion
Card Train 3351 15 Dynamic No motion

Chinese Train 13584 15 Dynamic No motion
Cube Train 2026 15 Dynamic No motion

Cube2 Train 6114 15 Dynamic No motion
Cylinders Train 9119 15 Static Rotation
Cylinders2 Train 11389 15 Static Random

Desk Train 7703 15 Static Rotation
English Train 6582 15 Dynamic No motion
Game2 Train 7751 15 Static Rotation
Printer Train 6312 15 Static Rotation
Printer2 Train 8809 15 Static Random

Tools Train 7193 15 Static Rotation
Toys Train 4765 15 Static Rotation

Toys2 Train 6422 15 Static Random
Bag Test 9892 15 Dynamic No motion
Balls Test 5182 15 Static Rotation

Balls2 Test 5622 15 Static Random
Chessboard Test 5574 15 Dynamic No motion

Game Test 7075 15 Static Random

Outdoor

Bike Train 6810 30 Static Random
Poster Train 1328 30 Static Rotation
Poster2 Train 3070 15 Static Random
Road Train 2732 15 Dynamic Rotation

Road2 Train 2888 15 Dynamic Rotation
Street Train 3198 30 Dynamic Random
Text Train 1158 15 Static Rotation

Building Test 3066 15 Static Rotation
Dog Test 2026 15 Static Rotation
Mall Test 4403 30 Static Random

from the indoor and outdoor scenes for testing and leave the
rest for training. For supervised approaches, all sequences
in our MS-RBD can be used for qualitative evaluation of de-
blurring performance in real-world scenarios. Finally, our
MS-RBD is summarized in Tab. 1, and some examples are
illustrated in Fig. 3.

2.2. High-Speed Events-RGB Dataset

Since only the test set of the High-Speed Events-RGB
(HS-ERGB) dataset [2] is available, we choose 4 sequences
(far-bridge lake 01, close-fountain schaffhauserplatz 02,
close-spinning umbrella, and close-water bomb floor 01)
for testing and leave the rest 11 sequences for model train-
ing. Besides, we manually filter the static frames in the
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Figure 3: Examples in our MS-RBD, where frames are at size 1152×768 and events are at size 288×192. The events
accumulated over the exposure time of blurry frames are shown at the bottom right of the corresponding frames (red/blue
dots denote positive/negative events).



Table 2: Efficiency comparisons on the FLOPs required to
infer a 160 × 320 image and the training hours needed on
the Ev-REDS dataset. Best results are bolded.

Method FLOPs Training time

EVDI [3] 13.45 G 48 hr
Ours 11.15 G 22 hr

Table 3: Results under R(BT , ET ) = 1 on the Ev-REDS
dataset. * means finetuning with #S = 49 (normal blur)
and 97 (large blur), where #S denotes the number of sharp
images used to synthesize one blurry frame. † means fine-
tuning using our proposed LTG. Best and second-best re-
sults are bolded and underlined, respectively.

Method
Normal blur Large blur

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

EVDI [3] 23.88 0.7789 23.02 0.7148
EVDI* 23.41 0.7569 22.55 0.7157
EVDI† 24.01 0.7827 23.29 0.7530
Ours 24.12 0.7898 23.57 0.7663

HS-ERGB dataset as motion blur does not occur in such
cases, and only use the dynamic scenes in our experiments
to ensure valid evaluation of the deblurring performance.

3. Comparisons with EVDI

Although a self-supervised deblurring approach is pro-
posed in the previous work EVDI [3], our method shows
advantages over EVDI in terms of both efficiency and ef-
fectiveness.

Efficiency. EVDI and the first-stage training of our
method both aim to achieve self-supervised learning by con-
straining the brightness and structure consistencies, but the
methodology is fundamentally different. Our LBC directly
ensures brightness consistency by learning blur2blur con-
version instead of the reblurring method used in EVDI. In
addition, our LSC guarantees structure recovery by transfer-
ring the knowledge learned from blur2blur to the blur2sharp
case, while EVDI employs cross-modal signals for supervi-
sion. Thus, unlike EVDI which requires restoring a large
number of latent frames per input for training, our approach
shows better efficiency (especially for the training hours) as
shown in Tab. 2.

Effectiveness. Our second-stage training designs a self-
distillation technique to handle the varying blurriness lev-
els and different spatial scales of motion blur, which are
not considered in EVDI. One possible solution for EVDI

to tackle different blurriness levels is to fit the distribution
of motion blur with varying temporal scales. However, di-
rectly training with different blurriness levels (normal and
large blur) degrades the performance of EVDI (see EVDI*
in Tab. 3) as EVDI gains supervision from input frames
and events, which tend to be deteriorated by severer blur
and more event noise under the case of large blur. By con-
trasting different blurriness levels, our learning method pro-
vides pseudo-ground-truth as strong supervision and pro-
gressively teaches models to handle large blur. Thus, our
method better utilizes the different blurriness levels of mo-
tion blur for performance generalization, which is validated
by the PSNR/SSIM gain of EVDI† over EVDI* in Tab. 3.
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