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A. Ethical and Social Impacts

One important consideration is the potential impact on
privacy and data protection. In order to generate inclusive
images, ITI-GEN relies on reference images that are often
sourced from publicly available datasets. However, the uti-
lization of these images raises concerns about privacy and
the potential for unintended consequences, such as the mis-
use of personal data. It is crucial to consider ways to mit-
igate these risks, such as data anonymization or obtaining
explicit consent from individuals whose images are used.

While ITI-GEN’s directional loss avoids directly mea-
suring the distance between the prompts and the reference
images, it is possible that the reference images used to rep-
resent certain attributes may themselves contain biases or
inaccuracies. To address this concern, it will be important to
carefully evaluate the quality and representativeness of the
reference images used in the model and to develop strate-
gies for identifying and correcting biases when they arise.

Inclusive image generation has the potential to promote
greater representation and diversity in various industries,
which could in turn promote greater social equality and re-
duce discrimination. However, it is also possible that the
technology could be misused or weaponized to promote
negative or harmful stereotypes. Therefore, it will be impor-
tant to consider the potential risks and benefits of ITI-GEN
carefully for mitigating negative outcomes.

B. Additional Related Work and Comparisons
In this section, we provide a more comprehensive com-

parison between ITI-GEN and related methods.

Bias Mitigation Methods in Text-to-Image Generation.
As mentioned in Section 2 of the main paper, ITI-GEN uses
images as guidance while existing approaches focus on de-
biasing the prompts. Two concurrent works, Prompt Debi-
asing [7] and Fair Diffusion [11] require the category names
of the target attributes for learning fair prompts. However,
we argue that, for some attributes, attribute names might
be hard to specify using language (e.g., skin tone, different
levels of brightness). ITI-GEN learns tokens without gradi-
ent propagation through the original text-to-image models,
making it more efficient in both training and deployment.

Personalization. Both ITI-GEN and personalized text-to-
image generation methods [18, 12] are inspired by prompt
tuning [15, 20]. However, they are fundamentally different,
as introduced in Section 2 of the main paper. We compare
with custom diffusion [18] in Table 1 of the main paper
mainly to provide a justification for whether the personal-
ization methods [18, 25, 12] can be used in inclusive text-



to-image generation. Specifically, we attempt to provide
different numbers of reference images for Custom Diffu-
sion [18] and select the best results to report. Moreover,
unlike personalization methods that use diffusion losses to
train the special tokens, the tokens learned by ITI-GEN are
generalizable between different models.

Disentanglement. It is worth mentioning that the aggre-
gation of multiple inclusive tokens learned with separate
reference datasets in marginal distributions can implicitly
disentangle attribute learning. However, we emphasize that
the primary goal of ITI-GEN is not to achieve feature (or
attribute) disentanglement [17]. Please see Section 4.3 and
Figure 11 of the main paper for a detailed discussion.

Image-to-image Translation and Editing. As mentioned
in Section 3.3 of the main paper, the goal of our work is to
promote inclusiveness or diversity but not for image edit-
ing. In image-to-image translation or editing tasks, it is re-
quired to edit the desired attribute while keeping other fea-
tures of the image intact. However, we do not have such a
requirement for ITI-GEN. For example, in Figure 4, Fig-
ure 7, Figure 10, and Figure 11 of the main paper, while
there are subtle changes to the clothing or background in
the images, ITI-GEN already achieves inclusiveness for the
intended attribute. We show examples with the same ran-
dom seeds in these figures mainly for a better comparison.

C. Reference Images Preparation
In this section, we provide more details on the construc-

tion of reference image sets to complement Section 4.1 of
the main paper. We use the following datasets as resources.

CelebA [21] is a benchmarked face attributes dataset and
each image with 40 binary attribute annotations. We exper-
iment with these binary attributes and their combinations.

FAIR Benchmark (FAIR) [10] is a recently proposed syn-
thetic face dataset used for skin tone estimation. Specif-
ically, we use images from the validation set containing
234 images and 702 facial crops. The validation set is re-
leased with ground-truth UV albedo maps. In order to ob-
tain ground-truth skin tone types, we follow [10] to compute
the Individual Typology Angle (ITA) score [5] of an albedo
map to be the average of all pixel-wise ITA values with a
pre-computed skin region area. For each image, ITA can
be used to classify the skin tone type according to 6 cate-
gories, ranging from very light (i.e., type 1) to dark (i.e.,
type 6) [5, 8]. We randomly select 25 images per skin tone
type as the reference images.

FairFace [16] contains face images with annotations for 2
perceived gender, 9 perceived age, and 7 race categories.
As discussed in Section 4.1 of the main paper, although we
value the contribution of the FairFace database to the com-
munity, we prefer using race labels and instead advocate for
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Figure A1. Examples of reference images from LHQ [26]. We
show randomly picked images for four attributes. Images within
each category are classified into one of five groups.

skin tone descriptions that recognize phenotypic diversity
within broad racial categories [3]. Therefore, we only use
their age annotations in our experiments.

Landscape (LHQ) [26] provides unlabeled natural scene
images, allowing us to extend ITI-GEN to a different do-
main beyond human faces. With the annotation tool from
[28], each image can be labeled with a score s ranging from
0 to 1, with a higher value indicating a closer match to the
corresponding attribute. Using this score, we classify each
image into one of the five degrees of the target attribute,
resulting in a multi-category attribute. Figure A1 shows ex-
ample reference images in the LHQ dataset. Note that, the
purpose of this experiment is not to justify LHQ as a perfect
resource for learning tokens for perception attributes, but to
investigate the capability of our ITI-GEN framework that
can leverage the data from another domain as guidance.

D. Evaluation Metrics.

Distribution Discrepancy (DKL). Following [6, 7], we
use the CLIP model to predict the attributes in the images.
For the attributes in which every category can be accu-
rately specified by natural language, we input the original
prompt combined with different names of categories into
CLIP for obtaining the attribute label. For instance, if we
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Figure A2. Ablation study on tokens length. Using fewer tokens
is not sufficient enough to capture the concepts of attributes, lead-
ing to a relatively high distribution discrepancy (i.e., KL). On the
other hand, using more tokens may degrade the image quality due
to language drifts (i.e., relatively high FID scores).

want to evaluate the attribute “male” for the images gen-
erated from “a headshot of a person”, we construct the in-
put text of CLIP as [“a headshot of a man”, “a headshot of
a woman”]. For the attributes in which some of the cate-
gories can not be specified by natural languages, such as
“eyeglasses” and “without eyeglasses” (due to the issue of
negative prompt), we input the text [“a headshot of a person
with eyeglasses”, “a headshot of a person”]. For attributes
that CLIP might be erroneous, we leverage pre-trained clas-
sifiers [16] combined with human evaluations. Specifically,
for the skin tone, which is extremely difficult to obtain an
accurate scale [1, 2, 14], we adopt the most commonly used
Fitzpatrick skin type [5] combined with off-the-shelf mod-
els [10] for evaluation.

Fréchet Inception Distance (FID) [13]. We report the FID
score to measure image quality. Specifically, we use the
CleanFID library [22] to calculate the FID relates to statis-
tics in FFHQ [17].

E. Additional Ablations and Analyses
E.1. Tokens Length

In our experiments, we set the length of inclusive tokens
as 3 (q in Equation 3 of the main paper). Here, we pro-
vide further analyses on the size of q and show results in
Figure A2. We see that fewer than 3 tokens may hurt the
performance — cannot generate images with the desired at-
tributes — potentially due to less representation capacity
in capturing the concepts in the reference images. On the
other hand, more tokens may result in adversarial effects or
collapse. We hypothesize that prepending too many tokens
after the original prompts leads to language drifts [19, 25].
This cannot be alleviated even with the semantic consis-
tency loss (Equation 7 of the main paper) because simply
forcing the two prompts with very different lengths to be
close in the embedding space is ineffective.

E.2. Tokens Aggregation

As mentioned in Section 3.1 of the main paper, we use
summation operation to aggregate the inclusive tokens of
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Figure A3. Concatenation vs. summation on inclusive tokens
aggregation. We show an example of the combination of “Male”
and “Eyeglasses” attributes. (a) Simply concatenating may reduce
the image quality or fail to generate the images with corresponding
attributes (e.g., “Woman with eyeglasses”) potentially because of
the language drifts [19, 25]. (b) ITI-GEN provides better results
with a conceptually simpler summation.
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Figure A4. Ablation study on the ratio of different categories
in the reference set. We study on the perceived gender attribute
in CelebA by changing the ratio of images from the “male” and
“female” categories. ITI-GEN is robust (i.e., with very small dis-
tribution discrepancy, KL) to the ratio of different categories in the
reference image set.

multiple attributes to achieve permutation invariance. Here,
we provide another option — concatenation. Specifically,
we ignore the positional encodings before feeding the in-
clusive tokens in the CLIP text encoder. Thus, the attention
mechanism applied to prompt tokens is permutation invari-
ant. Figure A3 shows comparison results. We notice that
ITI-GEN (with token summation) not only achieves bet-
ter results than concatenation but also offers a simpler and
cleaner solution for token aggregation.

E.3. Imbalanced Reference Images

As mentioned in Section 4.1 of the main paper, we select
25 reference images per category in our experiments. We
also mentioned that ITI-GEN is robust to imbalanced data
distributions in Section 3.3. Here, we provide additional
results as evidence. We change the ratio of “male” images
vs. “female” images for the Perceived Gender attribute in
CelebA and show the results in Figure A4. ITI-GEN can
always generate images with nearly a balanced distribution.
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Figure A5. Results of ITI-GEN with (a) mutually exclusive and (b)
overlapped reference images for attributes: gender×eyeglasses.
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Figure A6. ITI-GEN with corrupted reference data. The attribute
of interests is gender.

(a) Synthetic Reference Dataset (only one identity for man or woman)

a headshot of Brad Pitt a headshot of Halle Berry
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(b) Images generated by ITI-GEN (KL: 0.0002)

Figure A7. ITI-GEN can leverage less diverse reference images in
(a) for inclusive generation for the gender attribute in (b).

E.4. Overlapped Reference Images

As mentioned in Section 3.2 of the main paper, we need
a reference dataset for each attribute. However, this does
not pose a practical issue (which seems like an all-too-
exhaustive list to cover), because each reference dataset
does not have to be mutually exclusive. An existing dataset
(e.g., CelebA or smaller) can be divided into overlapped
sub-datasets, either manually or using a classifier. To
demonstrate this, we compare two settings: (a) Exclusive —
two datasets, each containing 50 images with equal gender
and eyeglasses distribution, respectively; (b) Overlapped —
a single dataset of 50 images with equal numbers between
man and woman labels, as well as with and without eye-
glasses. The results in Figure A5 show that using a smaller,
overlapped dataset does not affect the performance.

E.5. Corrupted Reference Images

In this subsection, we further study whether the quality
of the provided reference image strongly affects the general-
ization and the application of the ITI-GEN. We provide the
results with noisy or blurred reference images in Figure A6.
We also experiment with less diverse reference images (only
using the images with one identity) and show results in Fig-
ure A7. Both demonstrate the robustness of ITI-GEN to the
quality of reference data.
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Figure A8. Qualitative results of ITI-GEN when Km = 1.
When only “female” images are provided as the reference images
(left in (a)), ITI-GEN can leverage the synthetic data generated by
the original prompt (“a headshot of a person”, right in (a)), to-
gether with the real data, to construct the reference image set. By
jointly using these two sources, ITI-GEN learns inclusive tokens
representing the concept of “female”, which can be used to synthe-
size images for the desired category, as shown in (b). Section E.6
illustrates details.

E.6. Single Category Attribute (Km = 1)

In the main paper, we mainly studied the attributes that
have more than one category (Km is larger than 1 in Equa-
tion 3 of the main text). What if we only have the reference
images from one category of the target attribute (Km = 1)?
In light of our pairwise direction loss (Equation 4), there
are at least two different categories needed in the reference
images. Here, we show that ITI-GEN can leverage the syn-
thetic data generated by the original prompt (e.g., “a head-
shot of a person”) as an additional category to compute the
directional loss for the case of Km = 1.

We verify this idea by using only images of the “female”
category from the perceived gender attribute. From Fig-
ure A8, we can observe that by leveraging the female real
images and another set of synthetic images generated from
“a headshot of a person”, ITI-GEN is able to synthesize
female images. Further quantitative evaluation for the im-
ages generated by ITI-GEN indicates that 100% perceived
woman is obtained.

F. Additional Results

Due to space limitations, we only reported the results
of several attributes mainly to cover the attributes relating
to social factors and facial expressions in the main paper.
In this section, we provide additional results and detailed
comparisons to strong baseline methods.



Table A1. FID (↓) comparison. Reference images for ITI-GEN

are from FAIR benchmark [10]. ITI-GEN produces lower FID
than all the other baselines. SD: vanilla stable diffusion. EI: eth-
ical intervention. HPS: hard prompt searching. PD: prompt debi-
asing. CD: custom diffusion.

SD [24] EI [4] HPS [9] CD [18] PD [7] ITI-GEN

67.4 81.4 69.9 62.4 63.3 51.8

SD

positive

ITI-GENCDPDEI

negative positive negative positive negative

Figure A9. Visualization of different methods. The prompt is
“a headshot of a person”. Attributes are gender × eyeglasses.
Images across each line are sampled using the same random seed.

F.1. Qualitative and FID Results for Baselines

We only provide KL Divergence metric (DKL) in the
main paper for different baselines. Here, we incorporate
the comparisons of FID in Table A1 and visualizations in
Figure A9 with other baselines.

F.2. Single Binary Results

We summarize the full results of single binary attributes
with CelebA [21] in Table A2. We compare with the base-
line Stable Diffusion model [24] and Hard Prompt Search-
ing [9], which demonstrated strong performance in many at-
tributes (cf. Table 1 of the main paper). From Table A2, we
observe ITI-GEN achieves the best performance in nearly
all 40 attributes except some subtle facial attributes (e.g.,
“Wearing Necklace”). We use the prompt “a headshot of a
person” in Table A2 and show qualitative results of other
prompts (e.g., other occupations such as politician and mu-
sician) in Figure A21. Furthermore, we list all the hard
prompts used in our experiments in Figure A3.

As mentioned in Section 1 of the main paper, we re-
iterate that ITI-GEN is designed to handle several cases
(attributes) that Hard Prompts may struggle with. First, at-
tributes with fine-grained categories may be difficult to ex-
press in language. Second, linguistic ambiguity, as shown
in Figure A10 (a). Third, model misrepresentation, as illus-
trated in Figure A10 (b). More importantly, we argue that
ITI-GEN is not to replace Hard Prompts (especially for at-
tributes that are already can be handled by language) but to
support complex prompts with multiple attributes, as illus-
trated in Figure A11.

F.3. Multiple Attributes

We now consider multi-attribute cases and show addi-
tional results in Figure A12. To fully characterize the per-

Table A2. A full comparison with baseline methods with the
40 single attribute setting (DKL ↓). Reference images are from
CelebA [21]. Following [6, 7], we use CLIP [23] as the attribute
classifier. SD: vanilla stable diffusion [24]. HPS: hard prompt
searching [9]. Given the strong capability of the existing text-to-
image generative models, one can express the (most but not all)
desired attributes directly using Hard Prompts. However, it faces
challenges in certain attributes and ITI-GEN addresses most of
these drawbacks. Please see Figure A10 for a side-by-side qual-
itative comparison between HPS and ITI-GEN. Please see Fig-
ure A11 for how ITI-GEN can be compatibly used with Hard
Prompts.

Attribute SD [24] HPS [9] ITI-GEN

5’o Clock Shadow 0.02957 0.00847 0.06882
Arched Eyebrows 0.32972 0.04570 0.00892

Attractive 0.11264 0.07405 0.00000
Bags Under Eyes 0.33325 0.10498 0.01395

Bald 0.51578 0.22175 0.00892
Bangs 0.33886 0.19975 0.00000

Big Lips 0.20984 0.02908 0.00892
Big Nose 0.32423 0.01629 0.00056

Black Hair 0.35189 0.12539 0.00000
Blond Hair 0.60804 0.00501 0.00222

Blurry 0.01077 0.25348 0.09707
Brown Hair 0.41683 0.14207 0.05663

Bushy Eyebrows 0.07108 0.29737 0.02747
Chubby 0.14293 0.40233 0.00000

Double Chin 0.28637 0.48016 0.19274
Eyeglasses 0.38773 0.32622 0.00056

Goatee 0.25933 0.04266 0.00000
Gray Hair 0.65905 0.27921 0.17049

Heavy Makeup 0.39293 0.10989 0.04570
High Cheekbones 0.47875 0.00020 0.03599

Male 0.01033 0.00005 0.00000
Mouth Slightly Open 0.07030 0.14207 0.04570

Mustache 0.02013 0.12009 0.00000
Narrow Eyes 0.14968 0.00847 0.08228

No Beard 0.22442 0.49463 0.00222
Oval Face 0.39526 0.03158 0.02014
Pale Skin 0.17394 0.00045 0.00000

Pointy Nose 0.48951 0.02221 0.00000
Receding Hairline 0.31784 0.61526 0.02014

Rosy Cheeks 0.46275 0.03691 0.14987
Sideburns 0.55409 0.04570 0.02013
Smiling 0.25059 0.02075 0.00000

Straight Hair 0.08506 0.61526 0.19274
Wavy Hair 0.47663 0.36806 0.03599

Wearing Earrings 0.32029 0.15998 0.09707
Wearing Hat 0.65144 0.12539 0.01395

Wearing Lipstick 0.50658 0.12539 0.11323
Wearing Necklace 0.63600 0.05897 0.49463
Wearing Necktie 0.46687 0.69315 0.06882

Young 0.65647 0.00056 0.00000

formance of ITI-GEN, we study three additional settings
based on the attribute correlation matrix from the CelebA
dataset [21] (see Figure 2 in [27] for the correlation matrix).



Table A3. Hard Prompts used in our experiments. Different attributes may not follow the same template and we carefully specify or
express the attribute in the input prompt. The human-written hard prompts are used to generate images. Results are shown in Table A2.

Attribute Positive Prompt Negative Prompt
5’o Clock Shadow a headshot of a person {with 5’o clock shadow}. a headshot of a person {with no/without 5’o clock shadow}.
Arched Eyebrows a headshot of a person {with arched eyebrows}. a headshot of a person {with no/without arched eyebrows}.

Attractive a headshot of {an attractive} person. a headshot of {an unattractive} person.
Bags Under Eyes a headshot of a person {with bags under eyes}. a headshot of a person {with no/without bags under eyes}.

Bald a headshot of a person {in bald}. a headshot of a person {in no bald}.
Bangs a headshot of a person {with bangs}. a headshot of a person {with no/without bangs}.

Big Lips a headshot of a person {with big lips}. a headshot of a person {with small lips}.
Big Nose a headshot of a person {with big nose}. a headshot of a person {with small nose}.

Black Hair a headshot of a person {with black hair}. a headshot of a person {with no/without black hair}.
Blond Hair a headshot of a person {with blond hair}. a headshot of a person {with no/without blond hair}.

Blurry a headshot of a person {in blurry}. a headshot of a person {in no/without blurry}.
Brown Hair a headshot of a person {with brown hair}. a headshot of a person {with no/without brown hair}.

Bushy Eyebrows a headshot of a person {with bushy eyebrows}. a headshot of a person {with no/without bushy eyebrows}.
Chubby a headshot of a {chubby} person. a headshot of a {no chubby} person.

Double Chin a headshot of a person {with double chin}. a headshot of a person {with no/without double chin}.
Eyeglasses a headshot of a person {with eyeglasses}. a headshot of a person {with no/without eyeglasses}.

Goatee a headshot of a person {with goatee}. a headshot of a person {with no/without goatee}.
Gray Hair a headshot of a person {with gray hair}. a headshot of a person {with no/without gray hair}.

Heavy Makeup a headshot of a person {with heavy makeup}. a headshot of a person {with no/without heavy makeup}.
High Cheekbones a headshot of a person {with high cheekbones}. a headshot of a person {with low cheekbones}.

Male a headshot of a {man}. a headshot of a {woman}.
Mouth Slightly Open a headshot of a person {with mouth slightly open}. a headshot of a person {with mouth closed}.

Mustache a headshot of a person {with mustache}. a headshot of a person {with no/without mustache}.
Narrow Eyes a headshot of a person {with narrow eyes}. a headshot of a person {with no/without narrow eyes}.

No Beard a headshot of a person {with no/without beard}. a headshot of a person {with beard}.
Oval Face a headshot of a person {with oval face}. a headshot of a person {with no/without oval face}.
Pale Skin a headshot of a person {with pale skin}. a headshot of a person {with dark skin}.

Pointy Nose a headshot of a person {with pointy nose}. a headshot of a person {with no/without pointy nose}.
Receding Hairline a headshot of a person {with receding hairline}. a headshot of a person {with no/without receding hairline}.

Rosy Cheeks a headshot of a person {with rosy cheeks}. a headshot of a person {with no/without rosy cheeks}.
Sideburns a headshot of a person {with sideburns}. a headshot of a person {with no/without sideburns}.
Smiling a headshot of a person {with smiling}. a headshot of a person {with no/without smiling}.

Straight Hair a headshot of a person {with straight hair}. a headshot of a person {with no/without straight hair}.
Wavy Hair a headshot of a person {with wavy hair}. a headshot of a person {with no/without wavy hair}.

Wearing Earrings a headshot of a person {wearing earrings}. a headshot of a person {without wearing earrings}.
Wearing Hat a headshot of a person {wearing hat}. a headshot of a person {without wearing hat}.

Wearing Lipstick a headshot of a person {wearing lipstick}. a headshot of a person {without wearing lipstick}.
Wearing Necklace a headshot of a person {wearing necklace}. a headshot of a person {without wearing necklace}.
Wearing Necktie a headshot of a person {wearing necktie}. a headshot of a person {without wearing necktie}.

Young a headshot of a {young} person. a headshot of {an old} person.

Specifically, we select three attribute combinations with dif-
ferent levels of attribute entanglement (i.e., co-occurrence
frequency) — a higher co-occurrence value means the at-
tribute combination is more common in daily life while a
lower co-occurrence value indicates a rare case in the orig-
inal CelebA dataset. Admittedly, there are several cases
ITI-GEN does not always generate images with a balanced
distribution or faithfully generates images with specific at-
tributes. Please see Figure A12 for details.

F.4. Multi-Category Attributes

In Figure 6 and Figure 7 of the main paper, we investi-
gated the combinations of multi-category attributes. Here,
we further study another challenging setup: Perceived Gen-
der (CelebA) × Skin Tone (FAIR) × Age (FairFace) (108
different combinations of categories in total). Qualitative
results are shown in Figure A13 and in Figure A14. As
expected, ITI-GEN is capable of handling multiple fine-
grained attribute categories to achieve inclusiveness.

F.5. Other Domains

As shown in Figure 8 of the main paper, ITI-GEN can
generalize to a different domain for perception attributes on
scene images. In this subsection, we demonstrate more re-
sults of other attributes in Figure A15 for “colorfulness”,
Figure A16 for “sharpness”, Figure A17 for “scary”, Fig-
ure A18 for “contrast”, Figure A19 for “brightness”, and
Figure A20 for “’brightness”. As we observe, ITI-GEN
generates more diverse results than the baseline model even
with very complex input prompts.

F.6. Train-once-for-all Generalization

We provide additional qualitative results with differ-
ent occupation prompts in Figure A21, Figure A22, Fig-
ure A23, Figure A24, and Figure A25.

F.7. Compatibility with ControlNet

We provide additional examples of compatibility with
ControlNet in Figure A26.
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Figure A10. Challenges of (a) linguistic ambiguity and (b)
model misrepresentation. While Hard Prompts demonstrated
strong capabilities in generating images with desired attributes,
they cannot handle some situations. (a) Vanilla text-to-image mod-
els can hardly understand negative prompts (e.g., “not”, “without”)
possibly due to linguistic ambiguity. (b) For some attributes (e.g.,
mustache), directly using hand prompts results in misrepresented
results caused by the model bias.
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Figure A11. Compatibility of ITI-GEN to hard prompts. As
mentioned in Section F.2 and Figure A10, Hard Prompts show ac-
curate results with some attributes (e.g., “young” and “perceived
man” in the top row) but may result in misrepresented results for
other attributes (e.g., “mustache” in the middle row). ITI-GEN

demonstrates strong compatibility with Hard Prompts to benefit a
broad spectrum of attributes (bottom row).

G. Future Work

To establish the new direction and demonstrate its feasi-
bility so that future works can easily build upon, we inten-
tionally avoid sophisticated techniques to improve ITI-GEN

in favor of simplicity and believe that additional modifica-
tions can further enhance the inclusive generative models.

Lifelong ITI-GEN. In this study, we assume all the at-
tributes are accessible at the same time. In practice, we hope
to show that ITI-GEN is capable of the continue learning
setup. That is, adding new attributes while without forget-
ting or re-training the previous inclusive tokens.

Other Attributes. There are other attributes ITI-GEN
might be able to control via appropriately prepared refer-
ence images. For example, the 3D geometry attributes such
as head poses and materials such as normal and lighting.

References
[1] Gender shades. http://gendershades.org/. 3
[2] Google skin tone research. https://skintone.

google/. 3
[3] Jerone TA Andrews, Dora Zhao, William Thong, Apostolos

Modas, Orestis Papakyriakopoulos, Shruti Nagpal, and Alice
Xiang. Ethical considerations for collecting human-centric
image datasets. arXiv preprint arXiv:2302.03629, 2023. 2

[4] Hritik Bansal, Da Yin, Masoud Monajatipoor, and Kai-Wei
Chang. How well can text-to-image generative models un-
derstand ethical natural language interventions? In EMNLP,
2022. 5

[5] Alain Chardon, Isabelle Cretois, and Colette Hourseau. Skin
colour typology and suntanning pathways. International
Journal of Cosmetic Science, 13(4):191–208, 1991. 2, 3

[6] Jaemin Cho, Abhay Zala, and Mohit Bansal. Dall-eval:
Probing the reasoning skills and social biases of text-to-
image generative transformers. preprint arXiv:2202.04053,
2022. 2, 5

[7] Ching-Yao Chuang, Varun Jampani, Yuanzhen Li, Antonio
Torralba, and Stefanie Jegelka. Debiasing vision-language
models via biased prompts. preprint arXiv:2302.00070,
2023. 1, 2, 5

[8] Sandra Del Bino and FJBJoD Bernerd. Variations in skin
colour and the biological consequences of ultraviolet radia-
tion exposure. British Journal of Dermatology, 169(s3):33–
40, 2013. 2

[9] Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng,
Chang Zhou, Da Yin, Junyang Lin, Xu Zou, Zhou Shao,
Hongxia Yang, et al. Cogview: Mastering text-to-image gen-
eration via transformers. In NeurIPS, 2021. 5

[10] Haiwen Feng, Timo Bolkart, Joachim Tesch, Michael J.
Black, and Victoria Abrevaya. Towards racially unbiased
skin tone estimation via scene disambiguation. In ECCV,
2022. 2, 3, 5

[11] Felix Friedrich, Patrick Schramowski, Manuel Brack,
Lukas Struppek, Dominik Hintersdorf, Sasha Luccioni,
and Kristian Kersting. Fair diffusion: Instructing text-
to-image generation models on fairness. arXiv preprint
arXiv:2302.10893, 2023. 1

[12] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik,
Amit H Bermano, Gal Chechik, and Daniel Cohen-Or. An

http://gendershades.org/
https://skintone.google/
https://skintone.google/


0DQ�ZLWK�H\HJODVVHV 0DQ�ZLWKRXW�H\HJODVVHV :RPDQ�ZLWK�H\HJODVVHV :RPDQ�ZLWKRXW�H\HJODVVHV

�D��0DOH�î�(\HJODVVHV

<RXQJ�PDQ 2OG�PDQ <RXQJ�ZRPDQ
�E��0DOH�î�<RXQJ

2OG�ZRPDQ

0DQ�ZLWK�KHDY\�PDNHXS 0DQ�ZLWKRXW�KHDY\�PDNHXS :RPDQ�ZLWK�KHDY\�PDNHXS :RPDQ�ZLWKRXW�KHDY\�PDNHXS

�F��0DOH�î�+HDY\�0DNHXS
Figure A12. Additional results on multiple attributes. We consider three settings based on the attribute co-occurrence matrix in the
CelebA dataset (see Section F.3). The attribute combinations in (a) and (b) are relatively less entangled between the sub-categories whereas
in (c) — a failure case of ITI-GEN— the category “with heavy makeup” is heavily entangled with the category “female” in CelebA,
which indicates that other category combinations (e.g., “man with heavy makeup”) can rarely happen in our daily life. Therefore, the
text-to-image model can hardly synthesize images with this underrepresented attribute combination.

image is worth one word: Personalizing text-to-image gen-
eration using textual inversion. preprint arXiv:2208.01618,
2022. 1

[13] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In NeurIPS, 2017. 3

[14] John J Howard, Yevgeniy B Sirotin, Jerry L Tipton, and
Arun R Vemury. Reliability and validity of image-based and
self-reported skin phenotype metrics. IEEE Transactions on

Biometrics, Behavior, and Identity Science, 3(4):550–560,
2021. 3

[15] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Vi-
sual prompt tuning. In ECCV, 2022. 1
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Figure A15. ITI-GEN with perception attributes (“Colorfulness”) on scene images. ITI-GEN (bottom) enables the baseline Stable
Diffusion (top) to generate images with different levels of colorfulness. See Section C for details and Figure A1 for reference image
examples from LHQ [26]. Better viewed in color.
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Figure A16. ITI-GEN with perception attributes (“Sharpness”) on scene images. ITI-GEN (bottom) enables the baseline Stable
Diffusion (top) to generate images with different levels of sharpness. See Section C for details and Figure A1 for reference image examples
from LHQ [26]. Better viewed in color.
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Figure A17. ITI-GEN with perception attributes (“Scary”) on scene images. ITI-GEN (bottom) enables the baseline Stable Diffusion
(top) to generate images with different levels of scary. See Section C for details and Figure A1 for reference image examples from
LHQ [26]. Better viewed in color.
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Figure A18. ITI-GEN with perception attributes (“Contrast”) on scene images. ITI-GEN (bottom) enables the baseline Stable Diffu-
sion (top) to generate images with different levels of contrast. See Section C for details and Figure A1 for reference image examples from
LHQ [26]. Better viewed in color.
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Figure A19. ITI-GEN with perception attributes (“Brightness”) on scene images. ITI-GEN (bottom) enables the baseline Stable
Diffusion (top) to generate images with different levels of brightness. In this example, we intentionally pick images using the same random
seed in each column for ITI-GEN. Please compare the first and last examples in each column for a clear change in brightness. See Section C
for details and Figure A1 for reference image examples from LHQ [26]. Better viewed in color.
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Figure A20. ITI-GEN with perception attributes (“Brightness”) on scene images. ITI-GEN (bottom) enables the baseline Stable
Diffusion (top) to generate images with different levels of brightness. See Section C for details and Figure A1 for reference image
examples from LHQ [26]. Better viewed in color.
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Figure A21. Additional results on train-once-for-all generalization. Inclusive tokens of ITI-GEN trained with a neutral prompt (“a
headshot of a person”) can be applied to out-of-domain prompts in these three examples to alleviate stereotypes.
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Figure A22. Additional results on train-once-for-all generalization. Inclusive tokens of ITI-GEN trained with a neutral prompt (“a
headshot of a person”) can be applied to out-of-domain prompts in these three examples to alleviate stereotypes.
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Figure A23. Additional results on train-once-for-all generalization. Inclusive tokens of ITI-GEN trained with a neutral prompt (“a
headshot of a person”) can be applied to out-of-domain prompts in these three examples to alleviate stereotypes.
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Figure A24. Additional results on train-once-for-all generalization. Inclusive tokens of ITI-GEN trained with a neutral prompt (“a
headshot of a person”) can be applied to out-of-domain prompts in these three examples to alleviate stereotypes.



,7,�*(1

0DQ %DVHOLQH

ɒɎ̯̃˅˴Ξ̯ͧήɎ̗ͧɎ˅Ɏ̵̗̣̯ͅήɎ˅ήή̃͛˴˅͛ή

6N
LQ
�7
RQ

H
7\
SH
��

:RPDQ

7\
SH
��

7\
SH
��

7\
SH
��

7\
SH
��

7\
SH
��

Figure A25. Additional results on train-once-for-all generalization. Inclusive tokens of ITI-GEN trained with a neutral prompt (“a
headshot of a person”) can be applied to out-of-domain prompts in these three examples to alleviate stereotypes.
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Figure A26. Additional results on the compatibility with ControlNet [29]. All examples are based on train-once-for-all generation
(Section 3.3 of the main paper). For scene images in (a), (b), and (c), the inclusive tokens are trained with “a natural scene” using LHQ
images [26]. For human faces in (d), the tokens for age attribute are trained with “a headshot of a person” using FairFace images [16]. As
discussed in Section B, our method is designed for improving inclusiveness but not for image editing.


