
Appendix

A. Further Implementation Details

In this section, we further elaborate on the implemen-
tation details of our LCPS. Section 3.1 in the main paper
explains that the LiDAR branch consists of point and voxel
streams. We employ three MLP layers for the point stream
to extract point-level features with an output dimension of
64, 128, and 256 channels. Following processing by ACPA
and SARA, the fused point features are compressed to 16
channels to match the voxel features. As for the voxel
stream, the cylindrical encoder maps original point features
(XYZ-axis, remission, reflections, etc) to 16 dimensions.
After PVP module, features from the voxel stream and point
stream are merged into cylinders and then fed into Cylin-
der3D [42] backbone network. In Cylinder3D, four layers
of down-sampling 3D convolutions with BatchNorm and
ReLU activation are applied to the fused voxel features,
transforming the channel numbers of voxel features to 32,
64, 128, and 256, respectively. Finally, the voxel feature
dimension is compressed back to 128 after pooling layers
and remains at this dimension in the subsequent four up-
sampling layers of Cylinder3D.

Regarding the image branch, images from multiple cam-
eras are concatenated and scaled to 0.4 of the original
size. The SwiftNet-18[37] network comprises four pairs of
down-sampling and up-sampling layers. The four down-
sampling layers transform features maps to 64×320×180,
128× 160× 90, 256× 80× 45, and 512× 40× 23, respec-
tively. Then, a multi-scale spatial pooling module [10] is
utilized to compress the four feature maps to 128 channels.
Eventually, the other 4 up-sampling layers symmetrically
up-sample the feature map to the input size for following
geometric-consistent and semantic-aware alignment and fu-
sion.

B. Further Discussion

Visual Ablations on Asynchronous Compensation. Here
we further provide qualitative comparisons of asynchronous
compensation in Figure 7. The first and the second lines
are visual results without or with asynchronous compen-
sation respectively. The leftmost three columns demon-
strate the effectiveness, especially for foreground objects of
various sizes and distinct geometric shapes. For instance,
the most apparent improvement is exhibited in the second
leftmost column, where few points can be mapped to dis-
tant and marginal trucks, greatly enhancing the robustness
of LiDAR-Camera fusion. We also demonstrate a typi-
cal failed case here to illustrate the limitation. When the
ego-vehicle slows down, or objects come at the front or
back view, it is possible that the asynchronous compensa-
tion almost makes no difference because the time gap or the
changes of view angles is small.

Discussions on Time and Memory Cost. We compare
the time and memory cost in Table 5 with other SOTA
approaches if their projects are open-source or if such in-
formation is provided in their papers. Our LCPS full
model is slightly slower than LiDAR-only methods (includ-
ing our LiDAR-only baseline). Interestingly, adding image
branches does not essentially drop the FPS since we choose
lightweight ResNet-18 as the image backbone. The param-
eter number of our LiDAR-only baseline is high since we
replace the backbone BEV U-Net in Panoptic-Polarnet [41]
with Cylinder3D [42]. Similarly, the parameter number of
DS-Net [11] is also above 50M since it adopts Cylinder3D
as the backbone network too.

FPS(Hz) Params(M)
DS-Net [11] 3.2 56.5

Panoptic-PolarNet [41] 11.6 13.8
Panoptic-PHNet [19] 11.0 -
LCPS(LiDAR-Only) 8.6 65.9

LCPS(Full) 8.3 77.7

Table 5. Results of FPS and parameter scales on SemanticKITTI.

More In-Depth Analysis on Metrics. We provide further
in-depth analysis of our experimental results. It appears that
some Stuff metrics, e.g., PQst and mIoU, are slightly lower
than Panoptic-PHNet (0.3%-0.7%) on NuScenes val. and
test set. However, compared to the LiDAR-only baseline,
our approach boosts the performance in terms of PQst, SQst,
RQst, and mIoU consistently. This phenomenon reflects that
the improvement on Stuff is not as noticeable as Thing ob-
jects and further indicates that the LiDAR-Image fusion has
more benefits on Thing objects. The possible reason is that
Thing objects often have fewer points than Stuff ; thus, im-
ages may provide more crucial information for the former.

Our experimental results do not obviously surpass SOTA
methods since our baseline is relatively weak. Our baseline
project is built on the current highest open-source bench-
mark, Panoptic-Polarnet [41], while other SOTA meth-
ods have not released their codes yet. We reproduce the
Panoptic-Polarnet and get 67.7% PQ on NuScenes, and
55.7% PQ on SemanticKITTI. Then we further improve
the NuScenes baseline to 72.9% using data augmentations
as stated in Section 4.2. Based on this baseline, our fu-
sion strategy obtains +6.9%, +6.7%, and +3.3% PQ im-
provement on NuScenes validation, NuScenes test, and
SemanticKITTI validation set, reported in the main con-
tent. After submission, we improve our baseline on Se-
manticKITTI by using rare Stuff copy-paste augmentation,
demonstrating higher overall performances, as shown in Ta-
ble 7. We provide the improved version here for additional
reference and analysis. The fusion improvement on Se-
manticKITTI is lower than NuScenes since SemanticKITTI
has only two front-view cameras; thus, the number of
matched points is lower than NuScenes, as illustrated in



Figure 7. Visual comparisons of asynchronous compensation. The first and the second lines are visualizations without or with asynchronous
compensation respectively. The leftmost three columns demonstrate the effectiveness, especially for foreground objects of various sizes
and geometric shapes. The last column specifies that the asynchronous compensation almost makes no difference when the time gap is
small or at the front view.

Table 6. Additionally, the improvement on a higher Se-
manticKITTI baseline is lower than the original one because
heavy data augmentation (we add extra rare stuff augmenta-
tion in order to achieve a higher baseline) may diminish the
benefits of LiDAR-Camera fusion, which is also reported in
previous research on detection tasks like PointAugmenting
[35].

As for mIoU, it is mainly evaluated for semantic seg-
mentation, and we include it following previous research
[19, 41]. Better PQ simultaneously needs better seman-
tic segmentation ability (mIoU) and instance segmentation
quality. Therefore, a model of high mIoU may perform
worse in terms of PQ. Our method can achieve compa-
rable mIoU performance with SOTA Panoptic-PHNet in
NuScenes, while worse in SemanticKitti due to the weak
baseline issue. Besides, our fusion strategy consistently im-
proves PQ and mIoU in both NuScenes and SemanticKitti
datasets compared to the LiDAR-only baseline.

NuScenes SemanticKITTI
Matched Points 17182 39780

Total Points 34720 120387
Percentage 52.2 % 33.2 %

Table 6. Statistics on the averaged number of points matched to
images per frame.

Methods Improved (Val.) Improved (Test.)
PQ mIoU PQ mIoU

LCPS(LiDAR-Only) 60.6 66.8 57.8 62.0
LCPS(Full) 61.4 67.5 58.8 62.8

Table 7. Results of the fusion methods on the improved baseline
of SemanticKITTI.

Ablation Study on Perception Distance. As our backbone
network adopts a cylindrical voxel representation, we need

to set the perception distance of the scene volume, which is
defined as the radial distance from the LiDAR sensor to ob-
jects or points. Setting the perception distance too close or
too far is sub-optimal for training because a close distance
setting may miss some small objects far away and diminish
PQ performance, while a far distance setting may involve
more noise points and disturb training stability.

In our experimentation on the NuScenes validation set
(as shown in Table 8), we find that as the perception distance
increases, the performance initially improves and then de-
clines. The result shows that ±100 meters and ±120 meters
yield the highest PQ scores, while ±80 meters produce the
best mIoU. Intuitively, ±80 meters can be the valid distance
at which the LiDAR sensor is able to accurately detect ob-
jects in NuScenes, while approximately ±150 meters is the
farthest perception distance. Based on these findings, we
ultimately choose ±100 meters as the moderate perception
distance for NuScenes.
Correction Ability. When we review the visualization re-
sults, one interesting observation is that our model appears
to correct segmentation errors in the ground-truth labels.
Due to the utilization of bounding boxes and semantic labels
in rule-based scripts for automatically generating panop-
tic labels, errors in ground-truth labels are commonly ob-
served. Hence, it is essential for our network to boost more
generalizability and avoid overfitting with ground-truth la-
bels during the training process.

As illustrated in Figure 9, our LCPS network is capa-
ble of correcting ground-truth errors by preserving the in-
tact shape of an instance. Figure 9 (a) demonstrates that
the predicted truck segmentation retains the top edge area
since it is spatially and geometrically proximate to the truck
segments below. Similarly, in a sequence of frames in Fig-



Distance (±, [meters]) 50 60 70 80 90 100 110 120 130 NFV

PQ [%] 70.6 72.2 72.5 72.8 72.8 72.9 72.2 72.9 72.3 70.5
mIoU [%] 74.3 74.6 74.0 75.2 74.5 75.1 74.4 74.5 74.4 73.7

Table 8. The ablation of perception distance on NuScenes validation set. The experiment is tuned on our LiDAR-only baseline network.
NFV represents No Fixed Volume, which means we select the farthest point (usually ≥ 170m) as the distance for each LiDAR scan rather
than a fixed distance.

Figure 8. Visualization results of SemanticKITTI validation set.

Figure 9. The visualization of correction ability between ground-truth (GT, first line) and our model predictions (P, second line). The
results are from the NuScenes validation set, where the scan number below represents the sample index and red circles highlight notable
differences. (a) shows that our model can segment an intact segmentation of truck, even though the ground-truth labels overlook the top
area. (b) demonstrates that our model can consistently segment an entire vehicle during a sequence of frames over time, while the ground-
truth labels miss the back surface when the ego-car advances at a high speed.

ure 9 (b), the rule-based ground-truth label generation re- sults in the absence of the back surface of the vehicle, as the



ego-car advances at high speed. Nevertheless, our network
still maintains consistency in predicted segmentation over
time, which serves as compelling evidence that our network
obtains robust feature representation of objects by leverag-
ing LiDAR and image features, enabling it to correct false
ground-truth labels.
Further Qualitative Results. We provide further visual-
ization results on the validation set of NuScenes (Figure
10 and Figure 11 ) and SemanticKITTI (Figure 8) dataset
to detailedly demonstrate the panoptic segmentation abil-
ity of our network. In Figure 10, we display the objects
whose perspective projections are within the single image
and compare ground-truth labels and predictions in 3D and
perspective view. Our network effectively recognizes small
objects (such as bicycle and motorcycle) and rare objects
(such as trailers and construction vehicle). Especially in
the right-construction vehicle sub-figure, our segmentation
quality is slightly better than ground-truth labels at the po-
sition of robotic arms. Regarding Figure 11, we compare
the visualization results of objects across multiple images.
We primarily select challenging scenarios such as crowding
(pedestrian and car) and severe occlusion (truck). For ex-
ample, the truck segmentation is largely occluded by walls,
which severely damages the geometric structure in LiDAR
scenes and feature completeness in images. Under such
conditions, our network can correctly segment most of the
truck instances while missing one truck only (which is oc-
cluded by the orange construction vehicles). Moreover,
for pedestrian segmentation, our network additionally seg-
ments two more occluded figures in the middle image col-
umn, although it wrongly recognizes two tiny figures as one
person in the leftmost image column.



Figure 10. Visualization results of foreground objects. GT represents ground-truth labels, while P represents predictions of our LCPS. Text
such as ”Back” and ”FRONT LEFT” refers to the specific camera sensor. In this figure, the perspective projections of object segmentation
are within the same image. Generally, our network achieves accurate segmentation results over these small and distant objects, such as
bicycle and motorcycle, or rare objects like construction vehicle.



Figure 11. Visualization results of foreground objects. GT represents ground-truth labels, while P represents predictions of our LCPS.
Texts like ”Back” and ”FRONT LEFT” refer to the specific camera sensor. This figure shows that most objects of diverse types and spatial
locations across images can be consistently identified.


