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A1. Supplementary Material
This supplementary material is organized as follows:

• Section A2 describes the derivation of the implicit gra-
dient in the outer level of the bilevel optimization.

• Section A3 gives more details of six datasets including
three toy and three real datasets.

• Section A4 presents additional experimental results.

A2. Derivation of Implicit Gradient
In this section, we approximate the gradient of the outer

level optimization objective ▽αLERM (Bα, ω
(t), α(t−1))

and for ease of notation, we omit Bα and Bω in loss LERM

and R, respectively. Based on the chain rule, the gradient
▽αLERM (ω(t), α(t−1)) can be approximated as follows:

▽α LERM (ω(t), α(t−1))

= ▽ω(t)LERM (ω(t), α(t−1))▽α ω(t)(α)

= ▽ω(t)LERM (ω(t), α(t−1)) (1)

▽α (ω(t−1) − ηω ▽ω R(ω(t−1), α(t−1)))

= −ηω ▽ω LERM (ω(t), α(t−1))

▽α ▽ωR(ω(t−1), α(t−1)),

where ▽α and ▽ω are partial derivatives of α and ω, re-
spectively. ηω is the learning rate of the model parame-
ters ω. Motivated by [29], we make a Markov assumption
that ▽αω

(t−1) ≈ 0 in the last line. This assumption il-
lustrates that given ω(t−1), we do not care about how the
values of α from previous steps led to ω(t−1) at the t it-
eration step. It has already shown empirical success in
previous works using the bilevel optimization (BLO) [20,
27]. For the second-order term ▽ωLERM (ω(t), α(t−1))▽α
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▽ωR(ω(t−1), α(t−1)), we further propose an effective ap-
proximation by utilizing the first-order Taylor expansion of
▽α ▽ω R(ω(t−1)). Specifically, for any vector υ ∈ R|ω|,
with small ϵ > 0, we have the following objective:

υ⊤ · ▽ω ▽α R(ω(t−1), α(t−1))

≈ 1

ϵ
(▽αR(ω(t−1) + ϵυ, α(t−1))) (2)

−▽ωR(ω(t−1), α(t−1)).

Therefore ▽αLERM (ω(t), α(t−1)) is approximated as:

− ηω ▽ω LERM (ω(t), α(t−1))

▽α ▽ωR(ω(t−1), α(t−1)) (3)

= −ηω
1

ϵ
(▽αR(ω(t−1) + ϵυ, α(t−1)))

−▽ωR(ω(t−1), α(t−1)),

where υ = ▽ωLERM (ω(t), α(t−1)). The complexity of the
first-order approximate is the same as OOD methods and the
performance is as efficient as second-order optimization.

A3. Dataset Details
In this section, we detail describe the six datasets includ-

ing three toy and three real in Figure 1. All statistics are
listed in Table 1, including variant and invariant features,
classes, image size, featurizer and spurious ratios of train-
ing and testing environments. These datasets are as below:

• ColoredMNIST [3] is a variant of the MNIST hand-
written digit classification dataset [13] and is proposed
by IRM [3] to evaluate the spurious correlation of the
out-of-distribution (OOD) problem. The digits are col-
ored either red or green in a way that each color is
strongly correlated with a class of digits. The correla-
tion is different during training and testing data, which
leads to a spurious correlation. The correlated coeffi-
cient for two training and one testing environment is
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Figure 1. Examples of all datasets including ColoredMNIST, ColoredCOCO, COCOPlaces, NICO, CelebA and WILDSCamelyon.

Datasets Variant features Invariant features Classes Image size Featurizer Spurious ratio
ColoredMNIST [3] color digit 2 (2, 28, 28) Conv4 (0.9, 0.8, 0.1)
ColoredCOCO [1] color object 10 (3, 64, 64) ResNet8 (0.9, 0.8, 0.1)
COCOPlaces [1] place object 10 (3, 64, 64) ResNet8 (0.9, 0.8, 0.1)
NICO [9] background object 2 (3, 224, 224) ResNet18 Table 2 (left)
Celeba [18] gender blond 2 (3, 224, 224) ResNet18 Table 2 (right)
WILDSCamelyon [10] background object 2 (3, 224, 224) ResNet18 (1.0, 1.0, 1.0)

Table 1. Statistical information of three toy (top) and three real (bottom) by following DomainBed [8] and OoD-Bench [32].

(0.9, 0.8, 0.1), which means the occupancy of the red
and the green background in class 0. Following Do-
mainBed [8], this dataset contains 60,000 examples of
dimension (2, 28, 28) and 2 classes, i.e., if digits be-
long to the list of [0, 1, 2, 3, 4], the label is 0, other-
wise, it is 1. In Table 3, we show more details of the
environment split from major shifts to minor shifts.

• ColoredCOCO [1] is a more challenging dataset com-
pared with ColoredMNIST. Specifically, we select ten
classes from COCO [17], including airplane, bird,
boat, bus, dog, horse, motorcycle, train, truck and ze-
bra. Ten different colors are taken as spurious infor-
mation like ColoredMNIST. Their RGB values are [0,
100, 0], [188, 143, 143], [255, 0, 0], [255, 215, 0], [0,
255, 0], [65, 105, 225], [0, 225, 225], [0, 0, 255], [255,
20, 147] and [160, 160, 160]. We also divide three en-
vironments, including two training environments and
one testing environment. The number of samples for
each training environment is 400 for each class but the
testing environment is 200 for each class with the sam-
ple dimension (3, 64, 64). We use the same correlated
coefficient (0.9, 0.8, 0.1), which represents that these
ten biased colors are used with the corresponding co-
efficient and other samples use random colors.

• COCOPlaces [1] uses the same classes and setting
(e.g., image size, the number of samples or the cor-
related coefficient) with ColoredCOCO but different
spurious information sampled from Places [34].
The spurious places as main biasd background
including b/beach, c/canyon, b/building facade,
s/staircase, d/desert/sand, c/crevasse, b/bamboo forest,
f/forest/broadleaf, b/ball pit and o/oast house. More-
over, some random places are also used, i.e., k/kasbah,

l/lighthouse, p/pagoda, r/rock arch, w/water tower,
w/waterfall, z/zen garden.

• NICO [9] is a real-world dataset including photos of
animals and vehicles captured in a wide range of con-
texts (or backgrounds). There are 10 subclasses for an-
imals and 9 subclasses for vehicles, with each subclass
having 9 or 10 different contexts. Following [32], we
select a subset of this dataset to simulate the spurious
correlation of different contexts and classes (animal or
vehicle), which is similar to the setting of ColoredM-
NIST. More specifically, we make use of both classes
appearing in four overlapped contexts: “on snow”, “in
forest”, “on beach” and “on grass” to construct two
training environments and one testing environment. In
total, our split consists of 4,080 samples of dimension
(3, 224, 224) and 2 classes of the classification task.

• CelebA [18] contains over 200,000 celebrity images,
each of which has been annotated with 40 different
attributes related to facial characteristics. It has been
extensively investigated in AI fairness studies [7, 26,
25, 6] and OOD generalization [31, 32]. Following
the proposed setting by GroupDRO [21], we designate
“hair color” as the classification target and “gender” as
the spurious attribute. We work with a subset of 27,040
images divided into three distinct environments, mim-
icking the ColoredMNIST setting with a significant
distribution shift. To maximize the challenge of the
task, we focus on the group of blond-haired males,
which has the smallest number of images available.

• WILDSCamelyon [10] is a patch-based variant of the
Camelyon17 dataset [4] curated by WILDS [10]. It
comprises histopathological image slides from multi-
ple hospitals, with data variation arising from factors



NICO CelebA
Environment Class on snow in forest on beach on grass Class Male Female

Training 1 Animal 10 400 10 400 blond 462 11,671
Vehicle 400 10 400 10 not blond 11,671 462

Training 2 Animal 20 390 20 390 blond 924 11,209
Vehicle 390 20 390 20 not blond 11,209 924

Testing Animal 90 10 90 10 blond 362 120
Vehicle 10 90 10 90 not blond 120 362

Table 2. Environment splits of NICO (left) and CelebA (right) and the number of samples in each group.

0.1 0.3 0.5 0.7 0.9
Environment Class red green red green red green red green red green

Training 1 0 (0, 1, 2, 3, 4) 10,500 1,115 10,500 1,115 10,500 1,115 10,500 1,115 10,500 1,115
1 (5, 6, 7, 8, 9) 1,208 10,511 1,208 10,511 1,208 10,511 1,208 10,511 1,208 10,511

Training 2 0 (0, 1, 2, 3, 4) 9,306 2,308 9,306 2,308 9,306 2,308 9,306 2,308 9,306 2,308
1 (5, 6, 7, 8, 9) 2,324 9,395 2,324 9,395 2,324 9,395 2,324 9,395 2,324 9,395

Testing 0 (0, 1, 2, 3, 4) 1,127 10,449 3,450 8,126 5,781 5,795 8,130 3,446 10,463 1,113
1 (5, 6, 7, 8, 9) 10,449 1,180 8,219 3,538 5,924 5,833 3,559 8,198 1,191 10,566

Table 3. Environment splits of the ColoredMNIST dataset and the number of samples in each group. These ratios (e.g., 0.1) represent the
proportion between red and green samples in class 0 on testing data, corresponding to Table 4 of the main paper.

such as differences in patient populations, slide stain-
ing, and image acquisition. The dataset includes a total
of 455,954 examples of dimension (3, 224, 224) and 2
classes, and is collected and processed by 5 hospitals.

A4. Additional Experiments
In this section, we present more experimental results

based on various settings to complement the main paper.
Comparison of different structural designs of MAP. In
Table 5, we analyze the impact of different connections (i.e.,
serial or residual in Figure 4 (a) and (b)) in the main pa-
per, different forms (i.e., matrix or channel in Figure 4 (c)
and (d) in the main paper) and different initializations (i.e.,
random or eye) of IRM using the proposed MAP. In all set-
tings, a combination of residual, matrix and random has the
best performance. Other combinations also bring different
performance gains, showing similar conclusions of VREx
using our MAP in Table 3 in the main paper.
Could MAP perform well under different distribution
shifts? In Table 4, we show the performance of all sixteen
OOD methods in different distributions from major shifts to
minor shifts. The performance of most OOD methods de-
grades as the shifts get smaller or closer to IID data, which
demonstrates that these OOD methods extract invariant fea-
tures while possibly losing some information that helps IID
generalization. On the contrary, our MAP has good perfor-
mance under different distribution shifts, which shows that
MAP can learn the knowledge lost by OOD methods.
Could MAP perform well with samples of different ra-
tios? In Table 6 without error and Table 7 with error, we
generate training data and testing data with different ratios
on the ColoredMNIST dataset to simulate real-world sce-

narios with unbalanced data distributions, i.e., these ratios
(e.g., 0.1) represent the proportion between d2 in training
data and d1 in testing data in Section 5.1 in the main paper.
When the number of d2 in training data is more than d1 in
testing data, especially in 0.9, the IID performance of the
IID method (i.e., ERM) has an increase while these OOD
methods have a significant drop, which demonstrates these
IID or OOD methods learn different inductive bias for IID
and OOD generalizations. The proposed MAP method has
a reliable and effective performance in all data ratios.
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Major shifts → Minor shifts
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