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Mutli-view Methods
DETR3D [33] ✓ Multi - Visual × ✓ 3D 3D 3D Loss - -
PETR [16] ✓ Multi - Visual ✓ - 3D 3D 3D Loss - -
PETRv2 [17] ✓ Multi Temporal Visual ✓ - 3D 3D 3D Loss - -
BEVFormer [12] ✓ Multi Temporal Visual ✓ ✓ BEV 3D 3D Loss - -

Monocular Methods
CaDDN [23] × Single LiDAR Center × - × 3D × ✓ NMS
MonoDTR [9] × Single LiDAR Center × - × Perspective × ✓ NMS
MonoDETR ✓ Single - Depth ✓ - Depth Perspective 2D Loss - -

Table 1. Detailed comparison of MonoDETR and existing methods for camera-based 3D object detection.
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B. Additional Related Work

Object Detection with Transformers. 2D object de-
tectors [8, 13, 14, 25, 31] have attained excellent perfor-
mance but count on cumbersome non-maximum suppres-
sion (NMS) post-processing with rule-based label assign-
ment. To circumvent it, the seminal work DETR [2] con-
structs a novel framework by adapting the powerful trans-
former [32] for 2D detection. DETR detects objects on
the image by an encoder-decoder architecture and conducts
set prediction aided by Hungary Matching Algorithm [2].
However, due to the quadratic computational complexity of
attention, DETR requires the expensive 500 epochs to be
fully trained. To accelerate the convergence, Deformable
DETR [41] designs sparse deformable attention mecha-
nisms and achieves better performance with only 50-epoch
training. ACT [38] boosts the time efficiency by adaptive
clustering algorithms during inference. Besides, DETR is
further enhanced by modulated co-attention [6], placing an-
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chors [34], redesigning as two stages [29, 30], setting con-
ditional attention [21], embedding dense priors [35], and so
on [5, 10, 22]. For camera-based 3D object detection, we
have discussed the DETR-based methods in Section 2 and
Table 1 of the main paper. In Table 1, we further provide
more detailed comparison to our MonoDETR as follows.

B.1. vs. MonoDTR [9]

Similarity: (1) Single-view Detectors. MonoDTR and
our MonoDETR are both specially developed for 3D de-
tection from monocular (single-view) images, and require
no 3D-to-2D projection for feature aggregation. (2) Depth
Features. MonoDTR also extracts depth features of the in-
put image and directly fuses them with the visual features.
(3) Perspective Prediction. MonoDTR and MonoDETR
both predict 3D attributes of objects in the perspective view
and then transform them into 3D space as the output.

Difference: (1) Center-guided Paradigm. MonoDTR
is still a conventional center-guided method following
YOLOv3 [24], and utilizes local features around centers
to predict 3D properties, while our MonoDETR adopts a
novel depth-guided paradigm. (2) Not a DETR-based De-
tector. MonoDTR is not a DETR-based method and only
utilizes vanilla transformers to fuse depth and visual fea-
tures, while our MonoDETR fully follows the pipeline of
DETR for global feature aggregation. (3) Using Extra
Data. MonoDTR requires additional dense depth maps pro-
jected from LiDAR to supervise the depth features, while
our MonoDETR adopts foreground depth map that only
needs discrete object-wise depth labels. (4) No Object
Queries. MonoDTR contains no object queries, but relies
on pre-defined anchors to detect objects and rule-based la-
bel assignment to compute losses. Our MonoDETR applies
learnable object queries for detection and leverages Hun-
garian algorithm for bipartite matching. (5) NMS Post-
Processing. MonoDTR still requires complicated NMS for
post-processing to remove the duplicated boxes, while ours
need not. (6) Depth Positional Encodings. We refer to the
discussion in ??.

B.2. vs. DETR3D [33] and PETR (v2) [16, 17]

Similarity: (1) DETR-based Detectors. DETR3D and
PETR (v2) are also DETR-based methods with object
queries for adaptive feature aggregation. (2) No Hand-
crafted Designs. Via bipartite matching, all DETR-based
methods require no anchors or NMS post-processing.

Difference: (1) Multi-view Detectors. DETR3D and
PETR (v2) are specially designed for 3D detection from
multi-view images without single-view variant, while we
aim at monocular 3D object detection. (2) No Depth Cues.

They only extract multi-view features guided by visual ap-
pearances without exploring the geometric depth cues. (3)
Object Queries in 3D. They initialize the object queries
in 3D space and projects them onto multi-view images for
feature aggregation, while MonoDETR directly adopts 2D
depth-aware object queries without any 3D reference points.
(4) 3D Detection Space. From sufficient multi-view fea-
tures, they directly predict objects’ attributes in the 3D
space. As a monocular method, our MonoDETR extracts
limited 3D semantics from single-view images and predicts
the objects’ attributes in perspective views on the images.
(5) Bipartite Matching via 3D Losses. They utilize the 3D
losses derived from 3D object queries for matching. In con-
trast, our MonoDETR adopts only 2D losses for matching,
as discussed in Section 3.3 of the main paper.

B.3. vs. BEVFormer [12]

Similarity: BEVFormer is also a DETR-based method as
DETR3D and PETR (v2), similar to MonoDETR by (1)
DETR-based Detectors and (2) No Handcrafted Designs.

Difference: Similar to DETR3D and PETR (v2), BEV-
Former obtains the following properties different from
MonoDETR: (1) Multi-view Detectors, (2) No Depth
Cues, (3) 3D Detection Space, and (4) Bipartite Match-
ing via 3D Losses. Further, BEVFormer also utilizes pre-
vious frames as (5) Temporal Extra Data, and adopts (6)
Queries in BEV Space. More importantly, concerning (7)
Purpose of Queries, BEVFormer leverages BEV queries
to generate the BEV representations from multi-view im-
ages, but MonoDETR’s queries aim to detect objects from
monocular images.

B.4. Depth Positional Encodings

As shown in Figure 1, we propose learnable depth posi-
tional encodings for fe

D instead of conventional sinusoidal
functions in the depth cross-attention layer. Existing work
MonoDTR [9] also utilizes depth positional encodings in
the transformer, but has three main differences from ours.
(1) Representation. Our pD is represented by meters,
namely, one meter corresponding to a learnable depth em-
bedding, but MonoDTR assigns each depth bin with an em-
bedding. As the meters are more dense than depth bins,
especially for farther distances, our meter-wise pD can en-
code more sufficient depth positional cues. In addition, the
optimal distribution of depth bins can be different for dif-
ferent datasets, but our meter-wise representation is dataset-
agnostic and more general for various scenarios. (2) Acqui-
sition. Our pD is obtained by weighted summation of the
depth-bin confidences and their corresponding depth val-
ues in Equation ??, which is adaptive for different depth-
bin confidences and incorporates the predicted depth prior
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Figure 1. Details of depth positional encodings. In the depth cross-attention layer, we adopt learnable positional encodings for the depth
embeddings by the depth value interpolation.

into the encodings. In contrast, MonoDTR adopts argmax
to only utilize the depth encoding with the highest depth-
bin confidence. (3) Position. MonoDTR utilizes depth
positional encodings during the fusion of visual and depth
features, which is irrelevant to object detection. Our pD
is equipped at the depth cross-attention layer at the depth-
guided decoder, which directly guides the object queries for
3D attribute prediction.

C. Attribute Prediction and Loss Functions

After the depth-guided transformer, we adopt detec-
tion heads to estimate six attributes for each object query:
object category, 2D size (l, r, t, b), projected 3D center
(x3D, y3D), depth dreg, 3D size (h3D, w3D, l3D) and ori-
entation α. All queries share the head weights for the same
attribute. Specifically, we utilize one linear projection layer
for the object category, and two-layer MLP for depth, 3D
size, and orientation, and three-layer MLP for 2D size and
projected 3D center.

Projected 3D Center (x3D, y3D). We directly output the
coordinate (x3D, y3D) of each query’s projected 3D cen-
ter on the image, which thus discards two types of widely-
adopted offsets. The first is the 2D-to-3D offset for recov-
ering the projected 3D center from the predicted 2D center.
The other is the quantization offset caused by the downsam-
pled heatmap, which is a requisite for existing center-guided
methods. By this, we can obtain the projected 3D center of
each object in one step without the error of intermediate off-
sets, contributing to better localization accuracy. We adopt
L1 loss for the center estimation and denote it as Lxy3D.

Object Category and 2D Size (l, r, t, b). We detect ob-
jects of three categories, car, pedestrian, and cyclist, in

KITTI [7], and adopt Focal loss [14] for optimization, de-
noted as Lclass. Referring to FCOS [31], we obtain the
2D bounding box of an object by predicting the distances
from its four sides, l, r, t, b, to the projected 3D center
(x3D, y3D). Both (l, r, t, b) and (x3D, y3D) are normalized
from 0 to 1 by the image size. We apply L1 loss for the dis-
tances and GIoU loss [26] for the recovered 2D bounding
box following DETR [3], denoted as Llrtb and LGIoU .

3D Size (h3D, w3D, l3D) and Orientation α. Instead of
predicting the residuals to the mean shape values, we fol-
low MonoDLE [20] to use the 3D IoU oriented loss for 3D
sizes. We divide the heading angle into multiple bins with
residuals and adopt MultiBin loss [4, 40] to optimize the
prediction of orientation. The two losses are respectively
denoted as Lsize3D and Lorien.

Object Depth dpred. To estimate the final object depth
dpred more accurately, we average three predicted values:
dreg regressed by the detection head, dgeo converted by the
predicted 2D and 3D sizes following GUPNet [19], and
dmap(x3D, y3D) obtained from the foreground depth map
Dfg by weighted summation. We formulate it as

dgeo = f
h3D

t+ b
, (1)

dpred = (dreg + dgeo + dmap(x3D, y3D))/3, (2)

where h3D and t+ b denote the predicted heights of 3D and
2D sizes, and f denotes the camera focal length. We then
adopt Laplacian aleatoric uncertainty loss [4] for the overall
dpred, formulated as

Ldepth =

√
2

σ
∥dgt − dpred∥1 + log(σ), (3)



Method APBEV @IoU=0.7 AP3D@IoU=0.5 APBEV @IoU=0.5
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

SMOKE [18] 19.99 15.61 15.28 - - - - - -
MonoPair [4] 24.12 18.17 15.76 55.38 42.39 37.99 61.06 47.63 41.92
MonoRCNN [27] 25.29 19.22 15.30 - - - - - -
MonoDLE [20] 24.97 19.33 17.01 55.41 43.42 37.81 60.73 46.87 41.89
IAFA [39] 22.75 19.60 19.21 - - - - - -
MonoGeo [37] 27.15 21.17 18.35 56.59 43.70 39.37 61.96 47.84 43.10
RTM3D [11] 24.74 22.03 18.05 52.59 40.96 34.95 56.90 44.69 41.75
GUPNet [19] 31.07 22.94 19.75 57.62 42.33 37.59 61.78 47.06 40.88
MonoDTR [9] 33.33 25.35 21.68 64.03 47.32 42.20 69.04 52.47 45.90

MonoDETR (Ours) 37.86 26.95 22.80 68.86 48.92 43.57 72.30 53.10 46.62

Improvement +4.53 +1.60 +1.12 +4.83 +1.60 +1.37 +3.26 +0.63 +0.72

Table 2. Performance of the car category on KITTI val sets under different IoU thresholds. We utilize bold numbers to highlight the
best results, and blue for the second-best ones.

Method Extra data Pedestrian, AP3D Cyclist, AP3D

Easy Mod. Hard Easy Mod. Hard

CaDDN [23] LiDAR 12.87 8.14 6.76 7.00 3.41 3.30
MonoDTR [9] 15.33 10.18 8.61 5.05 3.27 3.19

M3D-RPN [1]

None

4.92 3.48 2.94 0.94 0.65 0.47
Movi3D [28] 8.99 5.44 4.57 1.08 0.63 0.70
MonoGeo [37] 8.00 5.63 4.71 4.73 2.93 2.58
MonoFlex [36] 9.43 6.31 5.26 4.17 2.35 2.04
MonoDLE [20] 9.64 6.55 5.44 4.59 2.66 2.45
MonoPair [4] 10.02 6.68 5.53 3.79 2.12 1.83

MonoDETR (Ours) None 12.54 7.89 6.65 7.33 4.18 2.92

Table 3. Performance of the pedestrian and cyclist categories on KITTI test set.

where σ denotes the standard deviation predicted together
with dreg, and dgt denotes the ground-truth depth label of
the object.

Two Groups of Losses L2D and L3D. For bipartite
matching, we calculate the matching cost of each query-
label pair only by the group of L2D, formulated as

L2D = λ1Lclass + λ2Lxy3D + λ3Llrtb + λ4LGIoU , (4)

where we set λ1∼4 as 2, 10, 5, 2, respectively. For L3D in
the final loss, we simply sum other 3D-related losses with-
out weights as

L3D = Lsize3D + Lorien + Ldepth. (5)

Foreground Depth Map Dfg . We categorize the depth
values of the foreground area into k + 1 bins, and adopt
Focal loss [14] to supervise each pixel in Dfg . The loss of

the depth map is denoted as Ldmap, which is not utilized for
bipartite matching but serves as a term in the overall loss.

D. Additional Results
Car Category on KITTI val Set. We list more results
of the car category on KITTI val set under different IoU
thresholds in Table 2, where our MonoDETR all achieves
the highest detection accuracy. Compared to the second-
best MonoDTR [9] that is a center-guided method with
external depth supervision, our MonoDETR only requires
object-wise depth labels and surpasses it by significant
gains for the easy level, e.g., +4.53% APBEV @IoU=0.7
and +4.83% AP3D@IoU=0.5.

Pedestrian and Cyclist Categories. In Table 3, we report
the scores for pedestrian and cyclist categories on KITTI
test set both under the IoU threshold of 0.5. As shown,
MonoDETR achieves competitive AP3D to other methods,



Settings Easy Mod. Hard

dpred 28.84 20.61 16.38
only dreg 24.28 16.83 13.68
w/o dgeo 25.75 18.74 15.36
w/o dmap 26.04 18.89 15.45
w/o uncertainty σ 24.22 16.98 13.65

Table 4. The design of depth prediction. ‘dpred’ denotes the
average of three predicted depth values, ‘dreg’, ‘dgeo’, and ‘dmap’
in Appendix C. ‘uncertainty σ’ denotes the standard of ‘dreg’.

indicating our superior generalization ability on other cat-
egories. Compared to MonoDTR [9] with additional data
input, it utilizes pre-defined anchors of average object sizes
over the dataset, and just needs to predict the offset value
to the average size. While MonoDETR introduces no such
dataset prior and directly predicts their sizes. As the two
categories are rare in the training data, it is harder for Mon-
oDETR to learn their properties from scratch.

E. Additional Ablation Study

Depth Prediction. We regard the average of three pre-
dicted depth values as the overall depth, dpred, of an object.
As shown in Table 4, each depth component plays a part in
the final depth prediction. The absence of either ‘dgeo’ or
‘dmap’ would harm the performance, since both two depth
predictions are converted from other representations, i.e.,
the 3D/2D size and foreground depth map, which are inde-
pendent from the depth regression head and might provide
complementary geometric cues. Also, the uncertainty σ can
largely boost the performance of monocular 3D detectors as
analyzed in MonoDLE [20].

Bipartite Matching. Our best solution only utilizes L2D

as the matching cost for each query-label pair. We inves-
tigate how it performs to append more 3D losses into the
matching cost. As reported in Table 5, adding Lsize3D or
Lorien would adversely influence the performance due to
their unstable prediction during training. Further, adding
Ldepth or the whole L3D even leads to training collapse,
which is caused by the ill-posed depth estimation from
monocular images.

Transformer Blocks and FFN Channels. In Table 6, we
experiment with different block numbers of the visual en-
coder and depth-guided decoder, along with the latent chan-
nels of the feed-forward neural network (FFN). As reported,
MonoDETR achieves the best performance with the 3-block
visual encoder, 3-block depth-guided decoder, and 256-
channel FFN. Different from DETR’s [3] 6-block encoder,
6-block decoder, and 1024-channel FFN for COCO [15]

Matching Cost Easy Mod. Hard

L2D 28.84 20.61 16.38
w Lsize3D 27.13 19.21 15.93
w Lorien 25.78 18.63 15.12
w Ldepth - - -
w L3D - - -

Table 5. The design of bipartite matching. ‘w’ denotes adding
the loss to the matching cost. ‘-’ denotes training collapse.

Set. Easy Mod. Hard

Visual
Encoder Blocks

2 26.72 18.73 15.43
3 28.84 20.61 16.38
4 27.37 20.04 16.09

Depth-guided
Decoder Blocks

2 25.55 18.58 15.41
3 28.84 20.61 16.38
4 25.31 18.29 15.11

FFN Channels
256 28.84 20.61 16.38
512 27.24 18.93 15.54

1024 26.77 19.07 15.87

Table 6. Transformer blocks and FFN channels. FFN denotes
the feed-forward neural network.

dataset, MonoDETR adopts a lighter-weight transformer
architecture because of the limited training samples in
KITTI [7] dataset.

Ablation Variants of Table 4 in the Main Paper. For
the first ablation study in the main paper, we implement
four variants of MonoDETR to investigate the effective-
ness of our approach. (1) ‘w/o Depth-guide Trans.’. We
discard both depth guidance and the transformer architec-
ture of MonoDETR to build a pure center-guided pipeline,
which can be regarded as a re-implementation of Mono-
DLE [20]. After the ResNet-50 backbone, we apply one
1 × 1 convolutional layer to predict a center heatmap from
the extracted visual feature, which predicts the projected 3D
object centers. Concurrently, two 3 × 3 convolutional lay-
ers are adopted to predict 3D attributes via local visual fea-
tures, which are supervised by losses in MonoDLE. This
variant indicates the effectiveness of both transformer and
depth guidance. (2) ‘w/o Transformer’. On top of the vari-
ant, ‘w/o Depth-guide Trans.’, we add the prediction of fore-
ground depth map in MonoDETR, including the lightweight
depth predictor and the supervision of object-wise discrete
depth labels. By this, the depth guidance can still be im-
plicitly injected into the visual features without the trans-
former architecture, validating the adaptive feature aggrega-
tion in transformer. (3) ‘w/o Depth Guidance’. Upon Mon-
oDETR, we remove the prediction of foreground depth map



(a) w/o Depth-guided Transformer (b) MonoDETR
w/o Depth-guided Trans. MonoDETR

Figure 2. Visualization of detection results. We utilize green boxes for the variant without the depth-guided transformer (Left) and yellow
boxes for MonoDETR (Right). We use red circles to emphasize the detection difference.

(depth predictor and depth encoder), and the depth cross-
attention layer in the decoder. This derives a DETR model
for adaptive monocular 3D object detection but not guided
by depth cues. This variant demonstrates the significance of
our depth-guided paradigm.

F. Additional Visualization
In Fig. 2, we show the detection results of our Mon-

oDETR and the variant without the depth-guided trans-
former on KITTI val set. Benefiting from the depth guid-
ance, MonoDETR obtains a global understanding of the



Architecture AP3D ↑ Depth Error ↓

MonoDETR 20.61 1.35±2.07
(a) 15.15 1.54±2.29
(b) 18.38 1.42±2.10
(c) 18.41 1.40±2.11
(d) 18.94 1.49±2.29

Table 7. Quantitative results of depth errors. We construct four
network variants of MonoDETR by removing one of the compo-
nents at a time. We respectively remove the depth-guided trans-
former, depth encoder, separate depth cross-attention layer, and
depth positional encodings, denoted as ‘(a), (b), (c), (d)’. We show
their AP3D under the moderate level and the mean depth errors
with standard deviations.

scene-level spatial structure and the inter-object relations.
This enables MonoDETR to well detect the objects oc-
cluded by others or truncated by images, and filter out the
objects of ignored categories, e.g., van and truck.

G. Depth Error Analysis
To demonstrate the effectiveness of our depth-guided de-

sign, we show the depth error comparison for different vari-
ants of MonoDETR. We utilize four network variants, de-
noted as ‘(a), (b), (c), (d)’ in Figure 3 and Table 7. We
calculate their predicted mean depth errors and standard de-
viations on KITTI val set. With our depth-guided trans-
former, the depth estimation can be well benefited, which
reduces the mean error from 1.54 meters to 1.35 meters and
improves the AP3D by +5.46% under the moderate level. In
addition, our best solution of 20.61% AP3D performs lower
error variance of ±2.07 than others, indicating our method
can produce a more stable depth estimation of objects.
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