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1. Method
1.1. BRDF Parameterization

In Sec. 3.1 we introduce the D, F , and G term of the
specualr BRDF. The normal dsitribution term D is approxi-
mated by Spherical Gaussian whose sharpness is controlled
by the roughness r:

D(h; r) = S(h,
1

πr4
,n,

2

r4
) =

1

πr4
exp(

2

r4
(h · n− 1)).

(1)
The Fresnel term F is given by:

F (ωo,h;b,m) = F0 + (1− F0)(1− (ωo · h)5),
where F0 = 0.04(1−m) + bm.

(2)

The geoemtry term G is modeled by two GGX function [4]:

G(ωi,ωo,n; r) = GGGX(ωi · n)GGGX(ωo · n),

where GGGX(z) =
2z

(2− r2)z + r2
.

(3)

1.2. Loss Terms

In this section we introduce the details of the loss terms
besides Lvol, Lphys and Lref.
Eikonal loss. This loss is adopted by most of the SDF-
based systems [7] It expects the expectation of gradient
magnitude is 1:

LEik = |∥∇G(x)∥ − 1|. (4)

Hessian loss. This loss discourages the direction of the gra-
dient to change rapidly by minimizing the norm of the Hes-
sian matrix [8]:

LHess = ∥HG(x)∥1, (5)
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where ∥ · ∥1 is the element-wize matrix 1-norm and Hf is
the Hessian matrix of the a function f .
Minimal surface loss. This loss minimize the elastic en-
ergy of the surface to produce compact interpolation or ex-
trapolation of the surface for unobserved region [8]. To cal-
culate the area of surface given by an implicit function, we
model the surface S as a differentiation of the object interior
V :

V = {x ∈ Ω|G(x) < 0},
S = ∂V = {x ∈ Ω|G(x) = 0},

(6)

where Ω is the whole 3D space. And the surface area can
be derived as:

volume(V) =
∫
Ω

H(G(x))dx,

area(S) =
∫
Ω

∥∇H(G(x))∥

=

∫
Ω

δ(G(x))∥∇G(x)∥,

(7)

where H is the Heaviside function and δ is the Dirac func-
tion. In practice, the gradient magnitude is 1 so can be omit-
ted, and we use a regularized form of the Dirac function
parameterized by a sharpness term ϵ. The loss is given by:

Lsurf = δϵ(G(x)), where δϵ(z) =
ϵπ−1

ϵ2 + z2
. (8)

Point cloud supervision. We can optionally introduce an
oriented point cloud to facilitate the convergence in early
stage [8]. The distance values and the gradient directions
are fit to the point cloud at the locations of the data points.
Let xD be the points in a point cloud D with normal nD,
the point cloud loss is given by:

Lpcd = |G(xD)|+ (1− nD · ∇G(xD)

∥∇G(xD)∥
). (9)

Bilateral smoothness. If the color Ip of a pixel p does
not change rapidly, we expect that the roughness and the
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Figure 1. Qualitative comparisons on the DTU [2] dataset with previous methods. The geometry results of previous methods are taken
from [6].
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Figure 2. The network architecture for the 4 fields in the MLP
setting.

metallic the corresponding 3D surface point xp are smooth
[5]. The bilateral smoothness loss is given by:

Lsmth = (∥∇r(xp)∥+ ∥∇m(xp)∥) exp(−∥∇Ip∥). (10)

Lambertian assumption. We encourage the surface to be
Lambertian as a tie break rule during material optimization
[5]. The loss is given by:

LLam = |r − 1|+ |m|. (11)

In practice, the weight for this loss is set to be very small to
prevent interfering the material estimation.

2. Network Architecture
The detailed network architectures for the 4 fields in the

MLP setting are illustrated in Fig. 2. Note that although the

Figure 3. Capturing setup for the NeILF-HDR dataset. The left
image shows the lighting setup, and the right image illustrates the
camera trajectories.

two light fields have the same input, in practice we still sep-
arate them because they have different frequency response
with respect to each input. The outgoing light field is ex-
pected to be more sensitive to the position input. while the
incident light field acts in the opposite way.

The NGP setting which uses hash grid [3] as the encoder
has less number of layers in general. The SDF, the outgoing
radiance field and the BRDF field each has 2, 4, 2 linear
layers with 64 hidden units, and the skip connections in the
SDF and the BRDF field are removed.
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Figure 4. Geometry and relighting results of real world objects.

3. NeILF-HDR Dataset

In this paragraph we elaborate more details of this
dataset. The capturing setup and the camera trajectories
are shown in Fig. 3. Besides Fig. 5 and 6 of the main
paper, more examples of captured objects can be found in
Fig. 6. (Semi-) GT camera parameters will be provided,
which were recovered by a state-of-the-art SfM system. The
focal length in EXIF was used to initialize the intrinsics be-
fore bundle adjustment. Note that our scene is densely cap-
tured and rich-textured tablecloths are used to ensure high-
quality feature matching and SfM reconstruction. The GT
geometry is not provided at the current stage.

PhySG SG-ENV Pix-ENV Ne-ENV NeILF NeILF++
Base Color 14.83 18.68 11.93 10.61 15.94 17.95
Roughness 7.23 11.25 14.37 14.63 16.49 21.90
Metallic 8.57 15.66 14.59 14.94 16.97 19.08

Table 1. Quantitative comparisons on BRDF on NeILF-synthetic.

Geometry Render
LHess+Lsurf ✗ ✗ ✓ ✓ w/ joint Lsmth+LLam ✗ ✓ w/ joint
Lpcd ✗ ✓ ✗ ✓

Chamfer ↓ 2.161 0.824 2.576 0.760 0.739 PSNR ↑ 27.88 27.68 28.61Normal ↓ 34.09 21.92 32.85 19.64 19.42

Table 2. Ablation study on loss functions on DTU.

4. Additional Results
4.1. Comparison with Previous Methods

We qualitatively compare the geometry and novel view
rendering of our method with previous methods, and the
results are shown in Fig. 1.

We also quantitatively compare the accuracy of material
estimation with previous baselines in Tab. 1. The results of
the baselines are taken from the original NeILF paper who
has already compared their method with re-implemented
PhySG (SG-ENV) and NeRFactor (Pix-ENV). More details
could be found in the NeILF paper [5].

4.2. Ablation study on loss functions

The ablation studies are performed on geometry and ma-
terial initialization stages of the NGP setting. We report
the mean scores over the 15 DTU scenes in Tab. 2: 1) The
LHess+LSurf , Lpcd all improve the geometry accuracy. Es-
pecially, the point cloud prior is important for the conver-
gence under NGP setting, which is also mentioned in the
main paper. 2) Lsmooth+LLam does not necessarily im-
prove the rendering quality, which is consistent with results
and discussions in the NeILF paper.

4.3. Ablation study on joint optimization

We first clarify the difference between before and w/o
joint: In w/o joint, we 1) run SDF Init.; 2) run Joint with
only geometry losses; 3) run Mat. Init.; 4) fix geometry and
run Joint with only material losses (please refer to Tab. 1 for
the training stages). While in before joint we only run 1) and
3). Comparisons between before and w/ joint are shown in
the last two columns in each group in Tab. 2, where all the
metrics get improved after finetuning.

And we additionally study the joint optimization on
NeILF-HDR using the novel view rendering PSNR. The
w. joint setting still performs better than w/o joint (22.76
v.s. 22.53), which is consistent with the result in DTU.

4.4. Geometry and Material Estimation

Additional qualitative results of geometry and material
estimation results on the DTU [2] and the NeILF-HDR
dataset are shown in Fig. 5 and 6. Note that the metallic
for the DTU scenes is often overestimated because of LDR



input. On the NeILF-HDR dataset, the estimated metallic is
more reasonable.

4.5. Relighting

We export the material parameters from the BRDF field
to a UV map and relight the objects by new environment
maps using Blender [1]. The results are shown in Fig. 4. For
animated results, please refer to the supplementary video.
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Figure 5. Qualitative results on the DTU [2] dataset. The metallic is often overestimated because of LDR input.
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Figure 6. Qualitative results on the NeILF-HDR dataset.


