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A. Architecture Details
The detailed model architecture is illustrated in Fig. S1. The local scene encoder ES is an MLP network consisting

of several residual blocks to encode the cropped input scene point cloud of M points (translated by the estimated body
translation γ̂ from the camera coordinate system) into a 512-d scene feature. In the diffusion denoiser D, for each joint j,
we use the 6D representation [9] to represent the joint rotations. A linear layer first maps the input noisy pose parameters θj

t

into a 512-d pose embedding . The timestep t is embedded by an MLP with the sinusoidal function. The pose embedding
is concatenated with the corresponding context embedding (including the image feature, scene feature, timestep embedding,
B, K, and the estimated body translation γ̂) as the input feature for node j in the GCN. The GCN module consists of an
input GCN layer, followed by four residual modulated GCN blocks [10] and a final GCN layer, which outputs the clean pose
parameters θ̂j

0 for each joint j.
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Figure S1: Architecture details for the local scene encoder ES and the diffusion denoise D. Numbers in ‘[]’ indicates
the corresponding feature dimension. PE stands for positional encoding.

B. Body Translation Estimator
As the body translation is coupled with the body shape and pose parameters in the SMPL model, an accurate estimation

of γ also relies heavily on the learning of the body pose θ and shape β. We adopt ProHMR [6] as the backbone for the body
translation estimator, which estimates (γ, θ, β) jointly, but with three major modifications.

First, the scale ambiguity between γ and β poses great challenges to the accurate global translation prediction in [6] with
a single image as the input. We leverage the 3D scene point cloud S with a global scene encoder to extract the global scene
feature. The global scene encoder has the same architecture as the local scene encoder in Fig. S1, but with the full scene point
cloud S in the camera coordinate system as the input. The encoded global scene feature is concatenated with the image feature
(encoded by a ResNet50 backbone [1]) as the conditioning input to the normalizing flow. Second, existing works [3, 4, 6]



take the cropped image (containing the target person, resized to a fixed resolution) as the input, which discards the location
information in the full image camera coordinate system. The ignorance of the original camera introduces additional ambiguity
and results in inaccurate estimations of global information. Besides the cropped image features, we additionally feed the
bounding box information B (the same as in Eq. (4) in the main paper) to the network to provide global-aware features. On
top of that, the predicted body is transformed back to the original camera coordinate system and the 2D keypoint reprojection
loss is calculated in the full image instead of the cropped image. The projected 2D keypoints in the original image have
similar perspective distortions with the person in the full image, offering better supervision for 3D predictions [7]. Last but
not least, the model is further conditioned on the camera intrinsics K such that it can be adapted to different cameras and
headsets.

Here the supervision on body pose θ and body shape β provides auxiliary information for the accurate estimation of the
body translation. And we employ this straightforward scene-conditioned model as the baseline method ProHMR-scene in
Sec. 5.3 in the main paper. However, the 3D scene features here are not sufficiently localized to learn fine-grained human-
scene interactions for local body pose (as demonstrated in Sec. 5.4 in the main paper), thus we only take the predicted
translation γ̂ from this model, and propose the scene-conditioned pose diffusion model for better local pose reasoning.

To train the body translation estimator we employ the same training objectives as in [6], but with the 2D keypoint re-
projection loss calculated in the full image frame. The trained model also serves as the ProHMR-scene-orig baseline in
Sec. 5.3 in the main paper.

C. Implementation Details
Training details. The image encoder EI(I) is loaded from the pretrained weights from [6] (for our method and all baseline
methods). For the ProHMR baseline, we load the entire pretrained checkpoint from [6] and fine-tune it on EgoBody dataset.
In our model, the body translation estimator and the local pose diffusion model are trained separately. The diffusion model is
trained with the ground truth body translation γ. During inference, we use the predicted γ̂ from the body translation estimator
to crop and translate the local scene point cloud to encode the local scene feature, and feed γ̂ as the input to the diffusion
model. The body pose θ is transformed from the 6D representation to the rotation matrix to calculate Lsimple. The weights for
Lsimple,L3D,L2D,Lβ,Lcoll,Lorth are 0.001, 0.05, 0.01, 0.0005, 0.0002, and 0.1, respectively. The collision loss term Lcoll is
disabled for the first three epochs. The model is trained with a single TITAN RTX GPU of 24GB memory for approximately
18 epochs, with a batch size of 12, which takes around 24 hours.
Collusion score guided sampling. In Eq. (9) in the main paper, we set a as 2. For the last 10 diffusion denoising timesteps,
we ignore the Σt and only scale ∇J (θt),Σt) by a such that the collision score guidance does not diminish too much at the
end of the sampling process.
Evaluation protocol. For the evaluation, the standard PA-alignment is obtained from the full body joints, however in the
highly truncated case the diverse nature of invisible body parts could deviate from the ground truth and result in inaccurate
PA-alignment, thus we perform PA-alignment with only visible body joints and report the PA-MPJPE metric.

D. More Experiments
D.1. Ablation Study on Model Architecture and Per-joint Conditioning

We also conduct experiments with the following two architectures as the diffusion denoiser D to verify the effectiveness
of our proposed per-joint visibility conditioning strategy and the GCN architecture: 1) a single MLP network to predict the
full body pose conditioned on c = (EI(I), ES(S, γ̂), γ̂,B,K, t), i.e. the image feature, the scene feature, the bounding
box information, the camera intrinsics and the diffusion timestep, without the per-joint visibility mask, denoted as ‘full-body
MLP’; 2) using the same per-joint conditioning strategy as our proposed method, but with J MLP networks to predict the
pose parameters for each body joint separately, where the MLPs share the same architecture but with different weights,
denoted as ‘per-joint MLP’. The results are shown in Tab. S1.

For the per-joint MLP model, there is a significant drop on sample diversity for invisible body parts, as such model
architecture disables the classifier-free guidance. With the classifier-free guidance, the pose for invisible body parts sampled
from the model excluding the image condition can be fused into the standard sampling results, thus improving the sample
diversity for invisible body parts. With a separate MLP for each body joint independently from other joints, each MLP for
the invisible joint already excludes the image condition, therefore no additional classifier-free guidance can be applied on
top of that to further improve diversity. Different from the GCN architecture which considers the human kinematic tree,
the per-joint MLP model neglects the inter-joint dependencies, which are crucial to model human poses and human-scene
interactions. Due to this reason, the min-of-n MPJPE for invisible joints of the per-joint MLP model is also higher compared



Table S1: Ablation study for model design choices. All experiments are conducted without the scene collision score
guidance J (θt). The results are reported for n = 5.

Method MPJPE ↓ min-of-n MPJPE ↓ coll ↓ contact ↑ std ↑ APD ↑
-vis -invis -invis -invis

Ours 65.10 107.59 0.00225 0.99 20.30 25.34
Per-joint MLP 65.35 113.62 0.00225 0.99 16.50 20.51
Full-body MLP 65.65 111.67 0.00228 0.98 11.08 12.98

Table S2: Evaluation on PROX with trained models on EgoBody. All results are reported for n = 5.

Method MPJPE ↓ min-of-n MPJPE ↓ coll ↓ std ↑ APD ↑
-vis -invis -invis -invis

ProHMR-scene-orig 117.97 217.69 0.00907 48.88 59.49
ProHMR-scene-weak-3D 115.53 201.37 0.00839 25.69 31.68
ProHMR-scene-strong-3D 112.37 199.33 0.00887 20.63 25.26
Ours 107.17 198.72 0.00739 30.01 37.35

Table S3: Comparison with Deterministic baseline. Here the MPJPE and PA-MPJPE are calculated for the full body.

Metrics METRO [8] EFT [2] SPIN [5] SPIN-scene Ours

MPJPE 98.5 102.1 106.5 91.6 80.4
PA-MPJPE 66.9 64.8 67.1 64.5 64.5

to the proposed GCN architecture, indicating that the generated body pose for visible body parts cannot cover the ground
truth distribution well enough.

For the full-body MLP model, the full body pose is conditioned on the image and scene feature. Without the explicit per-
joint visibility information, the network can hardly achieve the precise per-body-part control, therefore struggling to balance
between the accuracy and diversity for different body parts (with the lowest diversity compared with other two models in
Tab. S1). On the contrary, our proposed per-joint conditioning strategy can leverage the joint visibility to achieve both
accuracy for visible joints and diversity for invisible joints, together with plausible human-scene interactions.

D.2. Evaluation on PROX Dataset

We also evaluate the trained model on PROX dataset, a third-person view dataset with monocular RGB frames for human-
scene interaction scenarios. Due to the large domain gap of camera-body distances between EgoBody (1∼3m) and PROX
(2∼5m), predicted body translations are not accurate on PROX for all methods since they are trained on EgoBody. To better
analyze our model’s capability on scene-conditioned 3D body estimation on PROX, we report the numbers with ground truth
body translations for all methods. Our model outperforms the baselines (Tab. S2), with more accurate local pose, more
plausible interactions with the scene and relatively high diversity for unseen body parts.

D.3. Comparison with Deterministic Methods

Here we show the full-body accuracy of deterministic baselines (Tab. S3): they lag behind our method by a considerable
margin. Results show that even conditioning the network with scene features (SPIN-scene, by encoding scene point clouds
with an additional scene feature on top of SPIN) cannot perform comparably with our method. This validates (1) the ad-
vantage of our probabilistic formulation with highly ambiguous poses; (2) feeding the network with scene features alone is
insufficient, and our scene-guided diffusion sampling effectively addresses this.

E. More Qualitative Results

More qualitative examples and diverse sampling results of our proposed method are shown in Fig. S2 and Fig. S3, respec-
tively. While obtaining accurate pose estimations aligning with the input image, our method also achieves impressive sample
diversity for the unobserved body parts, with plausible human-scene interaction relationships.
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Figure S2: More qualitative examples. For both left and right sides: (a) the input egocentric image; (b) the rendered body
mesh overlay on the input image; (c) the rendered body mesh in the 3D scene.

F. Limitations and Future Work
Apart from the static human pose, human motions also play an important role in human behavior understanding from the

egocentric view. One of the limitations of the proposed method is that it only allows per-frame human mesh recovery given
a single frame input. Human motion estimation from an egocentric temporal sequence in 3D scenes would be an exciting
future work and enable more real-life AR/VR applications. Besides, the current model relies on a two-stage pipeline, which
estimates the global body translation and local body pose in separate stages. However, the global translation, local body pose
and body shape are coupled together, and equally important for learning the interactions between the human body and the 3D
environment. A unified end-to-end model to learn the body parameters altogether would be desired and potentially provide
better reasoning about human-scene interaction relationships.



Figure S3: More examples for diverse sampling. Each row shows five different sample results given the input image and
3D environment (the first column).
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