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1. Algorithm
Many existing methods [2, 1, 5, 4] alternatively train two

networks to combat the confirmation bias. In this paper, we
show that simultaneously training two networks still per-
forms well. Specifically, we divide training dataset D by
Eq. 5 and get two clean sets D(1)

cln ,D
(2)
cln by two networks

P (F (x, θi)) (i ∈ {1, 2}) respectively. The final clean set is:

Dcln = D(1)
cln ∩ D(2)

cln . (1)

The remaining samples are regarded as noisy samples:
Dnsy = D \ Dcln. Every image is augmented twice by
the two types of augmentation: (vw

i , vsi ) = (Aw(xi),
As(xi)), (v′wi , v′si ) = (Aw(xi),As(xi)). Following Di-
videMix [2], weak augmented images (vw

i , v′wi ) are lever-
aged to "co-guess" the correct labels for noisy samples and
guide the learning of each network. The full algorithm for
implementing RankMatch are shown below.

2. Additional Ablation Study
2.1. Rank Contrastive Loss

Our proposed Rank Contrastive Loss (RCL) strengthens
the consistency of the similar samples while pushes “dis-
similar” samples away, which makes features more discrim-
inative and benefits the sample selection. Thus, we first vi-
sualize the features of training images using UMAP [3]. As
shown in Fig. 1, features derived by RCL become more
compact, and the density of samples around the decision
boundaries is reduced, which implies the representations
become more discriminative.

2.2. Sensitivity Analysis

SCV introduces three hyperparameters: threshold τ ,
number of prototypes in each class K and the number of
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Algorithm 1: RankMatch. Line 1-5: sample selec-
tion by SCV; Line 16: Rank Contrastive Loss

Input: Network P (·, θ1) and P (·, θ2), training
dataset D, augmentation strategies Aw and
As, threshold τ , number of prototypes K,
number of voters k, ranking parameter r for
rank contrastive loss.

1 θ1, θ2=WarmUp (P (D, θ1), P (D, θ2))
2 while e < MaxEpoch do
3 D(1)

cln =SCV(D, θ1, τ,K, k);
4 D(2)

cln =SCV(D, θ2, τ,K, k);
5 Get Dcln = D(1)

cln ∩ D(2)
cln and get Dnsy by Eq 5;

6 for i = 1 to MaxIters do
7 Sample mini-batch B from Dcln and Dnsy

8 for (x
(c)
b , y

(c)
b ), (x

(n)
b , y

(n)
b ) in B do

9 for t = 1, 2 do
10 (vwb , v

s
b) = (Aw(x

(c)
b ),As(x

(c)
b ))

11 (ṽwb , ṽ
s
b) = (Aw(x

(n)
b ),As(x

(n)
b ))

12 q̄b =
1
2 (P (ṽwb , θ1) + P (ṽwb , θ2))

13 pb, ŷb = max{q̄b}
14 Obtain Lc using (vsb , yb) by Eq 6,
15 Obtain Ln using (ṽsb , pb, ŷb) by Eq 8,
16 Obtain LRCL using (vwb , v

s
b , ṽ

w
b , ṽ

s
b)

by Eq 11.
17 L = Lc + λnLn + LRCL + Ldiv

18 θt = SGD(L, θt)
19 end
20 end
21 end
22 end

Output: θ1, θ2.
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(a) RankMatch without RCL
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(b) RankMatch with RCL

Figure 1: Visualization of features learned by RankMatch with or without RCL on CIFAR-100 with 80% label noise. Each
variant of RankMatch is trained with 200 epochs. We randomly draw samples of 10 classes from the 100 classes. Compared
with representations trained without RCL, full RankMatch generates more discriminative features.
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Figure 2: Sensitivity to the variance of hyperparameters. Experiments are conducted on CIFAR-10 under 50% and 90%
symmetric noises. We vary the threshold τ from 0.90 to 0.99 to study the effect of confidence in RankMatch. SCV sets
up multiple prototypes in each class as confident voting candidates and ranks k-nearest candidates as voters. We range the
number of prototypes K from 5 to 30, and range the number of voters k from 2 to 10. The parameter r is used to rank top-r
channels for RCL. We range it from 3 to 25.

confident voter k. Rank Contrastive Loss introduces r to
select top-r feature channels to set up similarity matrix. Fig-
ure 2 illustrates the sensitivity to the variance of these hy-
perparameters. We can observe that our method is robust
against different choices for K, k, r and τ .

3. Additional Training Details
In the warm-up stage, we only conduct weak augmenta-

tion for all experiments. According to observations in the
sensitivity analysis, our method is not sensitive to the in-
troduced hyperparameters. Thus, for all benchmarks, we
use the same setting of hyperparameters P = 20, k = 5,
r = 5, τ = 0.95. For all experiments on CIFAR, we set
the training iterations in each epoch as 1024. The only hy-

Table 1: List of RankMatch hyperparameters for CIFAR

Hyperparameter
CIFAR-10 CIFAR-100

20% 50% 80% 90% 20% 50% 80% 90%

λn 0.2 1 10 10 0.5 2 5 8

perparameter that we tune is the loss weight λn for noisy
samples. Table 1 shows the value of λn that we use.

For both Clothing1M and WebVision, we train the net-
work using SGD as in DivideMix [2], and a batch size of
32. The warm up period occupies four epochs, and the loss
weight λn is set as 0. For Clothing1M, we set the number
of iterations in each epoch as 1000, and train networks for



80 epochs. We initialize the learning rate as 0.003 and re-
duce it by a factor of 10 after 40 epochs. For WebVision, we
train the network for 100 epochs, and reduce the initialized
learning rate 0.01 by a factor of 10 after 50 epochs.

4. Additional Experimental Results

Table 2: Average test accuracy (%) on CIFAR-10 dataset
over the last 10 epochs. We run our method three times
with different random seeds and report the mean and the
standard deviation.

Noise type Sym. Asym.

Noise level 20% 50% 80% 90% 40%

Cross-Entropy 82.7 57.9 26.1 16.8 85.0
DivideMix 95.0 93.7 92.4 74.2 91.4

RankMatch 96.43±0.08 95.39±0.09 94.26±0.11 92.01±0.07 94.36±0.25

We run our method for three times with different random
seeds and report the mean and the standard deviation in Ta-
ble 2. Compared with the DivideMix [2], our method out-
performs most recent methods by a large margin and with
small standard deviation, which implies that our experimen-
tal results are statistically significant.
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