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A. Deduction of GAP Loss and Optimization

In this section, we present the detailed deduction of the
generalized average precision (GAP) loss and its optimiza-
tion.

A.1. GAP Loss

As the global-level ranking objective, GAP loss aims to
rectify ranking errors by maximizing AP over all categories.
In a mini-batch B̂, it could be represented as:
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where Ĉ is the set of categories present in B̂, and P̂(·) is
the set of positive samples from each specific category in
B̂. By definition, N̂ (m) includes not only the negative
set N̂ , but also the positive set of other categories, i.e.,
N̂ (m) = N̂ ∪ P̂(n),∀n ̸= m. This causes conflicts in
optimization of different categories and confuses the learn-
ing objective. Therefore, when optimizing ranking orders
for category m, we exclude the positive samples of other
categories from N̂ (m) and only use N̂ as negative sample
set. In addition, as analyzed in Sec. 3.3, the |P̂(m)| in each
batch could not truly reflect the category statistic of the en-
tire dataset, which still leads to significantly larger gradients
for frequent categories than rare categories during training.
Therefore, the global statistic ω is introduced to approxi-
matively maximize AP over the entire dataset. According
to these modifications, GAP loss is rewritten as:
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where Lij = H(i, j)/R(i) is the pairwise ranking loss be-
tween sample i and j.

A.2. Optimization of GAP Loss

Since Lij is non-differentiable, the popular gradient de-
scent method is not applicable to the optimization of GAP
loss. Assuming xij = sj − si, the key to the problem is
to calculate ∂Lij

∂xij
. Similar to [1], we adopt the error-driven

update [3] method to obtain the gradients. Given the input
xij , the update is simply derived from the difference be-
tween target loss value and current loss value

∆xij = L∗
ij − Lij , (3)

where L∗
ij = 0 in the case of proper ranking between i and

j. Thus, the derivative w.r.t. si and sj is:
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Given a score sk, the gradient propagated from Lgap is
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This manually set gradient is further back propagated by the
chain rule to update parameters of the whole network.

B. More Ablation Studies
In addition to the ablation studies in Sec. 4.2, here we

conduct more comprehensive studies on our ROG. The ex-
periments are conducted on the Mask R-CNN with ResNet-
50-FPN. All the models are trained with 1x schedule. Un-
less specified, Sigmoid CE loss is adopted as the classifica-
tion loss in ROG.



Table A1. Analysis on different values of hyper-parameters γ and λgap.
Sampler γ λgap APbbox AP APr APc APf

Random 1.0 1.0 24.7 23.9 14.1 23.7 28.0
0.1 20.5 19.6 2.8 18.2 28.7

RFS

0.5
1.0 23.8 23.5 13.4 23.5 27.9
0.5 24.7 24.2 14.0 24.1 28.9
0.1 26.5 25.8 19.2 25.3 29.3

1.0
1.0 23.9 23.2 12.5 23.4 27.7
0.5 25.5 24.9 15.5 24.9 29.0
0.1 25.9 25.1 18.2 24.6 28.7

Table A2. Detailed ablation study on the designs in GAP loss. Cat. Spec. means the category-specific manner in defining positive and
negative samples. The global statistic ω is defined in Eq. 9. Online means the online statistic manner for calculating category size.
Excl.FG means excluding other foreground positive samples from the negative set of category m.

Cat. Spec. ω Online Excl. FG APbbox AP APr APc APf

✗ ✗ ✗ ✗ 14.6 15.8 2.9 13.8 23.7
✓ ✗ ✗ ✗ 19.2 19.6 7.5 19.2 25.3
✓ ✓ ✗ ✗ 23.8 23.5 14.1 23.7 28.0
✓ ✓ ✓ ✗ 24.1 23.4 14.8 22.5 28.1
✓ ✓ ✗ ✓ 24.1 23.9 14.5 23.8 28.2
✓ ✓ ✓ ✓ 24.7 23.9 14.8 23.0 28.8

B.1. Hyper-parameters

We study the two main parameters in ROG, i.e., γ for
calculating ω and λgap for controlling the weight of GAP
loss. The results are reported in Table A1. For the mod-
els trained without RFS, λgap has an important influence on
the performance. Compared with λgap = 0.1, a value of
1.0 boots the weight of GAP loss and improves the APbbox

and AP by 4.2 and 4.3, respectively. It also highlights the
significance of GAP loss for adjusting ranking orders across
objects. Interestingly, we find that the models trained with
RFS prefer a smaller λgap, possibly because RFS mediately
helps to improve the scores of rare objects and leads to less
ranking errors, to a certain extent. We further study the ef-
fect of γ. Intuitively, a larger value of γ brings stronger
global statistic and vice versa, e.g., γ = 0 means no global
statistic is injected into GAP loss. Experimentally, γ = 0.5
and λgap = 0.1 leads to better results with the RFS sampler.

B.2. Designs in GAP Loss

Regarding the designs in GAP loss, compared with Table
3 of the main text, we additionally make the comparisons
between whether or not to define positive-negative sample
pairs in a category-specific manner, and also report AP on
each category group.

In Table A2, the first line is the result from category-
agnostic AP loss, i.e., the loss is averaged on all positive
samples regardless of the categories which they belong to.
Since the majority of positive samples belongs to frequent
categories, the gradients for optimizing ranking of rare cat-

egories are negligible. This leads to poor performance on
APr. By defining positive set P̂(m) and negative set N̂ (m)
w.r.t. each specific category m in a batch, APr is improved
from 2.9 to 7.5. However, considering the entire dataset, the
gradients are still unbalanced, as rare categories appear only
in a few batches and the statistic in a batch fails to represent
the global distribution of entire dataset. Therefore, we in-
troduce the statistical information of entire dataset via the
global indicator ω. This significantly improves APr by 6.6
points. As analyzed in Sec. 4.2, the results also prove the
effectiveness of online statistic for total category size and
excluding positive samples of other foreground categories
when optimizing for category m. The overall design of our
GAP loss leads to superior and more balanced performance
on the rare, common and frequent categories.

B.3. Weight Norms of Classifier

To investigate whether ROG balances the training across
categories, we visualize the weight norms of classifier un-
der various settings. For the classification loss in ROG, we
choose the state-of-the-art ECM loss [2] and Seesaw loss
[4]. Following their implementations, the normalized mask
prediction (Norm Mask) is adopted with the RFS sampler.
As shown in Figure A1, compared with ECM and Seesaw,
the weight norms are more balanced under our ROG frame-
work. This phenomenon is consistent across different losses
(e.g., ECM and Seesaw), samplers (e.g., random and RFS)
and other tricks (e.g., Norm Mask), validating the effective-
ness of ROG for balancing the classifier during training.



Figure A1. Visualization on weight norms of classifier.
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