
SA-BEV: Generating Semantic-Aware Bird’s-Eye-View Feature
for Multi-view 3D Object Detection

Supplementary Material

This supplementary material provides more implementa-
tion details on SA-BEV in Sec. A, more experiments results
in Sec. B and additional visualizations in Sec. C.

A. More Implementation Details

A.1. Data Augmentation

We augment both images and BEV features following
the operation applied in [1]. For images, they are first
down-sampled to the desired resolution. Then they are pro-
cessed by random scaling with a range of [0.94, 1.11], ran-
dom rotating with a range of [−5.4◦, 5.4◦] and random flip-
ping with a probability of 0.5. After that, the images are
padded and cropped to a uniform shape. For BEV fea-
tures, augmentation is applied on the virtual points whose
features are cumulated to form BEV features. The coor-
dinates of virtual points are processed by random scaling
with a range of [0.95, 1.05], random flipping of the X and
Y axes with a probability of 0.5 and random rotating with a
range of [−22.5◦, 22.5◦]. Augmenting virtual points rather
than BEV features themselves can generate more accurate
augmented BEV features because the bilinear sampling is
not required by the former. The additional BEV data aug-
mentation (BDA) used by BEV-Paste also follows the above
settings.

A.2. Detection Configuration

We use the detection head of CenterPoint [10] to detect
3D objects from semantic-aware BEV features and follow
the settings used in BEVDepth [3]. The LiDAR coordinate
system of nuScenes is used to represent the coordinate of
points in the BEV space. The X and Y coordinates are in the
range of [−51.2, 51.2], and the Z coordinate is in the range
of [−5, 3]. The BEV space is divided into pillars for cumu-
lating virtual point features. When the resolution of input
images is 256×704, the pillars are in the size of [0.8, 0.8, 8]
and the BEV features are in the shape of 128 × 128. For
larger input images, the pillars are in the size of [0.4, 0.4, 8]
and the BEV features are in the shape of 256× 256.

Table A: Comparison with previous state-of-the-art multi-
view 3D detectors on the nuScenes val set.

Method Backbone Resolution mAP↑ NDS↑
FCOS3D [8] ResNet-101 900×1600 0.343 0.415
DETR3D [9] ResNet-101 900×1600 0.303 0.374
PGD [7] ResNet-101 900×1600 0.369 0.428
PETR [5] ResNet-101 512×1408 0.357 0.421
BEVFormer [4] ResNet-101 900×1600 0.416 0.517
PETRv2 [6] ResNet-101 900×1600 0.421 0.524
PolarFormer [2] ResNet-101 900×1600 0.432 0.528
BEVDepth [3] ResNet-101 512×1408 0.412 0.535
SA-BEV ResNet-101 512×1408 0.441 0.549

Figure A: Comparison of BEVDepth and SA-BEV on AP
for each category. C.V., P.D, M.C., B.C. and T.C. are the
abbreviations of construction vehicle, pedestrian, motorcy-
cle, bicycle and traffic cone respectively.

B. More Experiment Results

We change the image backbone of SA-BEV to ResNet-
101 when processing 512 × 1408 resolution images and
compare it with other methods that also utilize ResNet-
101 as their backbone. The results are shown in Table A.
SA-BEV achieves the best mAP and NDS, 2.9% and 1.4%
higher than its baseline (i.e. BEVDepth [3]). It also exceeds
other start-of-the-art methods that take 900 × 1600 resolu-
tion images as input. This comparison further proves the
effectiveness of SA-BEV.
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Figure B: Visualization results on images and BEV features. The red boxes and green boxes on BEV features represent the
ground truth and the predicted boxes, respectively. The dashed rectangles illustrate that the prediction of SA-BEV is more
precise than BEVDepth.



We also compare the detection precision of BEVDepth
and SA-BEV in each category and show the results in
Fig. A. SA-BEV achieves better precision than BEVDepth
in most of the categories. For instance, the APs on pedes-
trian and traffic cone are increased by about 10%, and the
APs on car, truck, bus and bicycle are increased by about
3%. The greater improvement in pedestrian and traffic cone
categories indicates that the semantic-aware BEV features
effectively preserve the information of small scale objects
that is more likely to be submerged by the large proportion
of background information.

C. More Visualization Results
We provide more visualization results of BEVDepth and

SA-BEV in Fig. B. With the help of semantic-aware BEV
features, SA-BEV can recall objects in the far distance and
identify the false truth precisely. Besides, SA-BEV gener-
ally predicts more accurate locations and directions of the
objects, which is also important in actual practice.
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