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In this supplementary material, we first introduce the de-
tails on network architecture (Section A) and loss functions
(Section B). Then we show additional experiments and ab-
lation study (Section C). Finally, we give the closed-form
analytical solution to get the minimal alignment error of
our piece-wise rigid constraint (Section D.1), analyze the
least square solution of rotation (Section D.2.1), and reveal
the relationship between ARAP loss and the local rigid con-
straint (Section D.2.2).

A. Details on Network Architecture
In this section, we describe more details of our network.

It consists of three modules: an encoder-decoder network,
part prediction networks, and an SDF prediction module.
Encoder-Decoder Network. The encoder-decoder net-
work predicts correspondences on template (Figure 2 of the
main paper). The encoder receives a point p from the tar-
get space Si, along with its predicted SDF value from the
SDF prediction module as input. It then produces a vec-
tor l(p) ∈ R8. Following that, the decoder takes l(p) as
input and outputs the corresponding point Di→tmpl(p) in
template space. Our encoder and decoder consist of 5 and 4
fully connected layers, respectively.
Part Prediction Networks. The networks ψe and ψd pre-
dict part probabilities, i.e. Ph in Eq. 6 of the main paper,
for each point. Each network divides the target shape into
20 parts, totally 40 parts together for calculating piece-wise
rigid constraint, i.e., NP = 40 in Eq. 6 of the main paper.
Our part prediction networks ψe and ψd have 4 and 3 fully
connected layers, respectively. We use SoftMax to normal-
ize the probabilities predicted by each network. Both net-
works are trained in a self-supervised manner by optimizing
piece-wise rigid constraint.

For each point p in a target space Si, ψe takes the output
vector l(p) ∈ R8 of the encoder as input, and ψd takes
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the correspondence point Di→tmpl(p) ∈ Stmpl in tem-
plate space as input. Since the correspondences are con-
sistent across shapes deformed from the same template, the
part segmentation learned by ψd is also consistent across
all shapes. The segmentation results are shown in Figure 4
in our main paper and Figure C in the supplementary ma-
terial. However, the correspondences are not learned well
at the beginning of training. Conceptually, the prediction
of ψd highly depends on learned correspondences and tem-
plate, so it cannot be effectively trained at the beginning
of training, with highly-undertrained optimization of corre-
spondences and template. In order to address this issue, we
use ψe to predict part segmentation, which does not depend
on correspondences on template. During training stage, we
observe that ψe provides valid rigid constraint earlier than
ψd and enables the network to converge faster.

SDF Prediction Module. The SDF prediction module Φ is
in charge of modeling template SDF field as well as SDF
fields of other shapes in training set. With dense corre-
spondence predicted by the encoder-decoder network, we
can query SDF values from template field to reconstruct
target shapes (Eq. 2 in the main paper). Inspired by Atz-
mon et al. [1] that the initial scalar field contributes greatly
to shape representation learning, we add the distance of an
input point p to center (0, 0, 0) to the output of the neural
implicit SDF function Φ and achieve similar initialization
to Atzmon et al. [1]. The output of SDF prediction module
is formulated like [6] as Φ(p|α) = ϕ(p|α)+∥p∥2, where ϕ
denotes a neural network for SDF prediction. The network
ϕ consists of 5 fully connected layers.

Other Details. Similar to the previous works [4, 9], the pa-
rameters of encoder, decoder, and SDF prediction module
are all predicted by Hyper-Nets, while part probability net-
works have their own parameters.All the Hyper-Nets in our
method consist of 5 fully connected layers with relu as ac-
tivation function. The dimension of hidden features is 256
in Hyper-Nets, and is 128 in other modules. The dimension



of latent code α for each shape is 128.
We use the sine activation function proposed by Sitz-

mann et al. [8] for encoder, decoder, SDF module and part
probability networks, because it has excellent property of
representing complex signal and its derivative [8]. The sine
activation function is in form of f(x) = sin(ωx), and
larger ω usually indicates output with higher frequency. In
our experiments, ω is set to 15 in part probability networks,
and set to 30 in encoder, decoder and SDF prediction net-
works.

B. More Details on Loss Functions
In Section 3.4 of our main paper, we follow the idea of

Lsdf to supervise queried SDF values from template. In the
following, we show the detailed formulations of the con-
straints. The Lsdf is used to supervise SDF values Φ(p|αi),
while the following constraints are used to supervise SDF
values queried from template field Φ(Di→tmpl(p)|αtmpl).
SDF Regression Constraints. The SDF regression con-
straints have the similar formulation to Lsdf . In order to
constrain the queried SDF to have the same sign of the
ground truth, we design the constraint for queried SDF
value formulated as

Lpbs =
∑
p∈Si

|ŝ(p)|,

ŝ(p) =

{
Φ(Di→tmpl(p)|αtmpl), if s̄ · Φ(Di→tmpl(p)|αtmpl) ≤ 0

0, otherwise

(1)
where s̄ is the ground truth SDF value. The loss weight of
Lpbs is ws, which is the same as ws in the main paper (the
first term of Eq. 8).

In order to supervise the normal on a represented shape,
we constrain the gradient of the queried SDF field to align
with ground truth normal:

Lpbn =
∑
i

∑
p∈S0

i

(1− Sc(∇pΦ(Di→tmpl(p)|αtmpl), n̄)),

(2)
where n̄ is the ground truth normal, and Sc is cosine similar-
ity. Note that the Lpbn is different from Lpfn (Eq. 9 in the
main paper). The loss Lpbn supervises normals on the rep-
resented shape, while Lpfn supervises normals on template,
which is proved to be crucial for shape representation learn-
ing by Deng et al. [4]. The weight of Lpbn and Lpfn is wn

(which is also the weight of
∑

p∈S0
i
(1− Sc(∇Φ(p|αi), n̄)

of Eq. 8 in the main paper).
We also constrain the gradient of template field to sat-

isfy Eikonal equation:
∑

p∈Stmpl
|∥∇Φ(p|αtmpl)∥2 − 1|,

and apply ρ (the fourth term of Eq. 8 of the main paper) on
template field to encourage off-surface points on template
to have larger SDF values. Their weights are same as wEik

and wρ in the main paper.

Reconstruction Loss. We give the detailed formulation of
Lrecon in Section 3.4 of the main paper as

Lrecon =
∑
i

∑
p∈Si

∥p−Di→i(p)∥2+∑
p∈Stmpl

∥p−Dtmpl→tmpl(p)∥2.
(3)

The weight of each loss term remains the same across all
subjects, specially ws = 3 × 102, wn = 50, wEik = 5,
wρ = 50, wrecon = 5 × 103, wreg = 1 × 105, wlr = 10,
wnbr = 5× 104, wpr = 3× 103.

Figure A: More qualitative experiments to demonstrate the
ability of our method to learn template. The learned tem-
plate shapes with the separate template representation are
all not reasonable, and our template enables significantly
better results of generated shapes than those with the sepa-
rate template.

C. Additional Experiments

C.1. Ablation Study

Effect of Our Template Representation. In this section,
we use the same method as the main paper to further inves-
tigate the ability of our novel template shape representation
architecture and show more results. Instead of representing
the template shape as a latent code, we test an ablation case
where a separate network only predicts template SDF like
DIF. The architecture of the new template SDF module is
the same as the origin SDF prediction module in our main



w/o ψe w/o SDF input full model
CD ↓ 1.174 0.783 0.687
corr ↓ 0.0165 0.0265 0.0141

Table A: Ablation study on subject 50026 from D-
FAUST[3] dataset. ”w/o ψe” represents the model without
part probabilities prediction network ψe. ”w/o SDF input”
represents the input of our encoder only contains coordinate
p. It shows that ψe can improve the performance on both
Chamfer distance and geodesic distance. Using SDF as in-
put of encoder can greatly improve the performance of our
method.

Figure B: Qualitative results of ablation study. Colors indi-
cate the dense correspondences. SDF can provide encoder
with geometric clues to predict correspondence. The part
prediction network ψe is an essential component of the rigid
constraint, which helps the network converge.

paper. Other parts of our network and the loss functions re-
main the same. More results are shown in Figure A. The
learned template shapes with the separate template repre-
sentation are all not reasonable, and our template enables
significantly better results of generated shapes than those
with the separate template.

Effect of ψe in Piece-wise Rigid Constraint. In the main
paper, we conduct the experiments to demonstrate the sig-
nificance of piece-wise rigid constraint. In this ablation, we
investigate the effect of the part probabilities predicted by
the networks ψe (See Section A). Although we cannot attain
consistent part segmentation across shapes with ψe only, we
demonstrate ψe plays a crucial role in our method. We com-
pare the reconstruction and correspondence results of our

method without ψe on subject 50026 in D-FAUST [3] in Ta-
ble A and Figure B. Subject 50026 is selected for evaluation
due to its large range of motion. Experiments show that ψe

can deal with this challenge and improve the performance
of shape reconstruction and correspondence prediction. In
contrast, we observe that method without ψe cannot con-
verge as well as our full model, especially in the end points
of the body with the large range of motion.

Effect of SDF input to Encoder. In order to evaluate the
effect of SDF input to encoder, we compare the Chamfer
distance of shape reconstruction and geodesic distance of
predicted correspondences by removing the SDF input. We
also show the results using our method without input SDF
on subject 50026 in D-FAUST [3] in Table A and Figure B.
We observe that method without SDF as input to encoder
fails in some poses and generates shapes with bad geometry.

C.2. More Evaluations on Model Capacity

In this section, we show more model capacity compar-
isons with DIF [4] and 3D-CODED [5] using reconstructed
shapes in the training set. Figure E and Figure F shows that
our method outperforms both of them.

C.3. Reconstruction from Full Observation

In this section, we will show more qualitative exper-
iments of our method compared with DIF [4] and 3D-
CODED [5]. We generate point cloud of each subject by
simulating multiple depth cameras, and then fit our shape
representation model by minimizing Eq. 10 in the main pa-
per. Figure G and Figure H show the results of humans
and animals. We can observe that our method outperforms
DIF and 3D-CODED, and achieves plausible shape recon-
struction and correspondence results. Our method can fit
shapes with large deformation effectively. Conceptually,
3D-CODED and DIF lack sufficient rigid constraints, so
they cannot model subjects with large deformation properly.
Although DIF can learn template SDF field, the learned
shape is out of the distribution of the training data. There-
fore, there are many floating components on the recon-
structed shapes.

C.4. Reconstruction from Partial Observation

We generate point cloud of each subject by simulating a
single depth camera, and then fit our representation model
by minimizing Eq. 10 in the main paper. Figure I and Fig-
ure J show the qualitative experiments of shape reconstruc-
tion from partial point cloud. Our model can reconstruct
shapes from partial point cloud while 3D-CODED [5] fails.
Therefore, we only compare with DIF [4]. Results show
that our method outperforms DIF by a large margin for par-
tial point clouds.



Figure C: Comparison with the stitched puppet [13].

C.5. Comparison with LoopReg

In this section, we compare our method with LoopReg
[2] on training set. LoopReg creates a self-supervised loop
to register a corpus of scans to a common 3D human model
(i.e., SMPL [7]), which can model correspondences be-
tween human pairs. As shown in Table B, our method out-
performs LoopReg on both IoU and corr.

LoopReg Our method
IoU ↑ 0.726 0.881
corr ↓ 0.1087 0.0304

Table B: Capacity evaluation on D-FAUST with LoopReg
[2]

C.6. Qualitative Experiment on Part Segmentation

In this section, we compare our method with the stitched
puppet [13]. The stitched puppet [13] is a shape representa-
tion method that manually segments the represented shape
into multiple parts and combines the parts into human body
shapes with different poses. As shown in Figure C, our self-
supervised method achieves comparable results.

C.7. Failure Cases

We show several failure cases in Figure D where float-
ing components make Chamfer distance increase. Although
these shapes have fine human surface geometry, they have
large Chamfer distance because of the floating components
far from the body.

D. Details on Rigid Constraint
In this section, we will give details on the closed-form

solution of piece-wise rigid constraint in Section 3.3 of the
main paper. Then, we will give theoretic analysis on our
local rigid constraint, in which we elaborate on the rela-
tionship between the proposed constraint with implicit rep-
resentation in Section 3.2 of the main paper and the tra-
ditional As-Rigid-As-Possible loss [11] that was originally
proposed for discrete mesh deformation.

Figure D: Several failure cases where floating components
make Chamfer distance increase.

D.1. Closed-Form Solution of Piece-wise Rigid Con-
straint

We follow Sorkine-Hornun et al. [11] to give a closed-
form solution of the minimal rigid transformation error of
our piece-wise rigid constraint Lpr (Eq. 6 of our main pa-
per). Detailed proof can be found in [11]. In this section,
we use the same notions as [11] for easy understanding.

Denote P = {p1,p2, ...,pn} and Q = {q1,q2, ...,qn}
to be corresponding points in Rd. Therefore, the optimal
rigid transformation (R, t) between P and Q can be esti-
mated by minimizing the following alignment error as

L = min
R,t

F (R, t)

F =

n∑
i=1

wi∥Rpi + t− qi∥2,
(4)

where R ∈ SO(d) is rotation matrix and t ∈ Rd is transla-
tion.

First, Sorkine-Hornun et al. [11] proved that the optimal
translation t can be expressed as

t = q̄−Rp̄, (5)

where q̄ and p̄ are the centroid of Q and P

p̄ =

∑n
i=1 wipi∑n
i=1 wi

, q̄ =

∑n
i=1 wiqi∑n
i=1 wi

. (6)

Incorporate the optimal t into Eq. 4, and then we get the
loss function F as

F =

n∑
i=1

wi∥R(pi − p̄)− (qi − q̄)∥2. (7)

Giving the definitions as follows

xi := pi − p̄, yi := qi − q̄, (8)

we can set the translation t to be zero, and then focus on the
estimation of R by optimizing the following equivalent loss
function

L = min
R

n∑
i=1

wi∥Rxi − yi∥2. (9)



Denote W = diag(w1, ..., wn), X = [x1,x2, ...,xn],
Y = [y1,y2, ...,yn]. Then the loss function L can be ef-
fectively calculated with the following closed-form solution

L =

n∑
i=1

wi(∥xi∥2 + ∥yi∥2)− 2Sσ(XWYT )

Sσ =

{
σ1 + σ2 + ...+ σd−1 + σd, if det(UVT ) = 1

σ1 + σ2 + ...+ σd−1 − σd, if det(UVT ) = −1,

(10)
where U, V are the left and the right singular matrices of
XWYT , and {σi} are singular value of XWYT in de-
scending order. Moreover, the gradient of Sσ is a rotation
matrix, which does not contain large value and enables sta-
ble learning process.

In order to calculate the 3D alignment error L, we only
need several efficient operations, such as solving SVD of
3 × 3 square matrix XWYT and conducting point-wise
additions and multiplications.

In our problem, P and Q are consisting of the points in
the target space {p} and the correspondence {Di→tmpl(p)}
in the template space, respectively. Therefore, the piece-
wise rigid loss Lpr (Eq. 6 of our main paper) can be ex-
pressed in closed-form as

min
Rh,th

∑
p∈S0

i ∪S−
i

Ph(p)∥(Rhp+ th)−Di→tmpl(p)∥22

=
∑

p∈S0
i ∪S−

i

Ph(p)(∥x∥2 + ∥xi→tmpl∥2)− 2Sσ(XWhX
T
i→tmpl)

(11)
where x and xi→tmpl are the points in the target space and
their correspondence in template after removing their re-
spective centroid as

x = p− p̄

xi→tmpl = Di→tmpl(p)− D̄i→tmpl(p),
(12)

and p̄ and D̄i→tmpl(p) are their respective centroid as
Eq. 6. The j-th column of X ∈ R3×n is a x derived from
the j-th point p, each column of Xi→tmpl ∈ R3×n is the
correspondence xi→tmpl of the j-th point p, Ph(p) is the
probability that point p belongs to h-th part, and Wh is a
n× n diagonal matrix, its j-th diagonal element is the pre-
dicted part probability Ph of the j-th point p.

D.2. Analysis on Local Rigid Constraint

D.2.1 Analysis on Least Square Solution of Rotation

In this section, we give further analysis on the formula-
tion of closest rotation matrix of J(Di→tmpl). With sin-
gular value decomposition (SVD), we get J(Di→tmpl) =
UΣVT . Given the properties of the determinant, we know

that det(J(Di→tmpl)) = det(U)det(Σ)det(VT ). Ac-
cording to the definition of the singular value, the sin-
gular values of J(Di→tmpl) (i.e. diagonal items of Σ)
are always positive. Therefore, det(J(Di→tmpl)) has the
same sign as det(U)det(VT ), i.e. det(UVT ). When
det(J(Di→tmpl)) < 0, its closest orthogonal matrix UVT

has negative determinant. However, a rotation matrix
must have positive determinant. To this end, previous
method [12] figured out the closet rotation that has pos-
itive determinant. R = USVT (R have positive de-
terminant) of J(Di→tmpl) with a diagonal matrix S =
diag(1, 1, det(UVT )).

D.2.2 Equivalence between Local Rigid Constraint
and ARAP

In this section, we will prove that our implicit local rigid
constraint is equivalent to traditional As-Rigid-As-Possible
(ARAP) loss in infinite small scope. ARAP loss [10] is
generally defined on discrete representations such as mesh,
while we find that with the closed form of alignment error
Eq. 10 ARAP loss can be extended to continuous implicit
representation for infinite small scope.

According to Sorkine et al. [10], ARAP loss on mesh is
defined as

E = min
R

∑
j∈N (i)

wij∥(p′
i − p′

j)−Ri(pi − pj)∥2. (13)

In our method, we represent the shape as implicit field
instead of mesh in original ARAP [10], so there is not ex-
plicit adjacency relation for our shape representation. It is
barely addressed and highly challenging to constrain ARAP
in the continuous implicit shape representation.

For a sampling point p, we assume the adjacent points
of p are uniformly distributed on the surface of a sphere
centered at p, which can be formulated as p+ ωs, where ω
is an arbitrary unit vector. For simplicity, we consider wij

as 1.
Considering the adjacent points within the infinitely-

small volume, we denote adjacent points as

p+ ωds, (14)

where ds is infinitely small length.
Denote the mapping from p to p′ as D(p) and ∂p′

∂pT , i.e.
J(Di→tmpl)(p), as J . In our case, p is in the target shape
space and p′ is in the template shape space. Then we have
the following equation by Taylor expansion

D(p+ ωds) = D(p) + Jωds+ o(ds). (15)

According to Eq. 10, we can also get a closed-form so-
lution for ARAP loss in Eq. 13. Because ω is evenly dis-
tributed on the sphere,

∑
ω ω = 0, the centroid of p+ ωds



is p and the centroid of D(p)+Jωds is D(p). After incor-
porating p+ωds andD(p)+Jωds and their centroids into
Eq. 8, we get xi = ωds and yi = Jωds+ o(ds), and incor-
porate xi and yi into Eq. 10, then we can get the following
equation by ignoring the infinitesimal of higher order

E =
∑
ω

∥ωds∥2 + ∥Jωds∥2 − 2Sσ(
∑
ω

ωωTJT ds2)

=ds2
∑
ω

(∥ω∥2 + ∥Jω∥2)− 2ds2Sσ(
∑
ω

ωωTJT ).

(16)
Since ω is uniformly distributed, we use integration instead
of summation.

E = ds2(

∫
S2

∥ω∥2dω+
∫
S2

∥Jω∥2dω

−2Sσ(

∫
S2

ωωTJT dω)),

(17)

where S2 represents the surface of a unit sphere embedded
in the 3-dimensional space, and each term will be analyzed
in the following part.

Since ∥ω∥2 = 1, the first term can be easily calculated
as the area of the sphere, i.e. 4π.

Then the second term can be simplified as

∫
S2

∥Jω∥2dω =

∫
S2

ωTJTJωdω

=

∫
S2

tr(ωTJTJω)dω =

∫
S2

tr(ωωTJTJ)dω

= tr

(∫
S2

JTJωωT dω

)
= tr

(
JTJ

∫
S2

ωωT dω

)
.

(18)
To solve the above function, we need to know the result
of
∫
S2 ωω

T dω. We use spherical coordinates to calcu-
late the integration. ω = (sinθcosϕ, sinθsinϕ, cosθ)T =
(sinθcosϕ, sinθsinϕ, 0)T + (0, 0, cosθ)T

∫
S2

ωωT dω =

∫ π

0

∫ 2π

0

sinθ

( 0
0

cosθ

+

sinθcosϕsinθsinϕ
0

)
( 0

0
cosθ

+

sinθcosϕsinθsinϕ
0

)T

dϕdθ

(19)

Consider
∫ 2π

0
sinϕ dϕ = 0 and

∫ 2π

0
cosϕ dϕ = 0:

=

∫ π

0

∫ 2π

0

sinθ

( 0
0

cosθ

 0
0

cosθ

T

+

sinθcosϕsinθsinϕ
0

sinθcosϕsinθsinϕ
0

T )
dϕdθ

=

∫ π

0

∫ 2π

0

sinθ

sin2θcos2ϕ sin2θsin2ϕ
2 0

sin2θsin2ϕ
2 sin2θsin2ϕ 0
0 0 cos2θ

 dϕdθ

(20)
Consider the periodicity of

∫ 2π

0
sin2ϕ dϕ = 0:

=

∫ π

0

∫ 2π

0

sinθ

sin2θcos2ϕ 0 0
0 sin2θsin2ϕ 0
0 0 cos2θ

 dϕdθ

=

 4π
3 0 0
0 4π

3 0
0 0 4π

3

 .

(21)
Denote singular value decomposition (SVD) of J to be

J = UΣVT . Then Eq. 18 can be calculated as

tr(JTJ

∫
S2

ωωT dω) = tr(JTJI
4π

3
)

=
4π

3
tr(JTJ) =

4π

3
tr(VΣUTUΣVT )

=
4π

3
tr(VΣΣVT ) =

4π

3
tr(VTVΣΣ)

=
4π

3
tr(Σ2) =

4π

3
(σ2

1 + σ2
2 + σ2

3),

(22)

where σ1, σ2, σ3 are singular values in descending order.
With the above result of

∫
S2 ωω

T dω, the third term of
Eq. 17 can be calculated as

Sσ

(∫
S2

ωωTJT dω

)

=Sσ

(∫
S2

(ωωTJT )T dω

)

=Sσ

(
J

∫
S2

ωωT dω

)
= Sσ

(
4π

3
J

)

=
4π

3
(σ1 + σ2 + det(UVT)σ3).

(23)

We can simplify Eq. 17 with the above results of its three
items as

E =
4π

3
ds2(3 + σ2

1 + σ2
2 + σ2

3 − 2(σ1 + σ2 + det(UVT)σ3))

=
4π

3
ds2((σ1 − 1)2 + (σ2 − 1)2) + (σ3 − det(UVT))2).

(24)



Our Larap in Section 3.2 of our main paper has the fol-
lowing formulation

Larap = smoothL1(σ1, 1) + smoothL1(σ2, 1)

+ smoothL1(σ3, det(UVT ))
(25)

If σ1, σ2 and σ3 are close to 1 and UVT = 1, the smoothL1
loss becomes L2 loss. By ignoring the scale term, Larap has
the same form as Eq. 24.

Therefore, our implicit local rigid constraint is equiva-
lent to traditional As-Rigid-As-Possible (ARAP) loss in in-
finite small scope.
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Figure E: Reconstruction from training set of humans. We compare our method with DIF [4] and 3D-CODED [5]. Our
method reconstructs shapes with multiple poses and large deformations. The characteristics of each subject is represented
well.



Figure F: Reconstruction from training set of animals. We compare our method with DIF [4] and 3D-CODED [5]. Our
method reconstructs shapes with multiple poses and large deformations. The characteristics of each subject is represented
well.



Figure G: Reconstruction from full observation of humans. We compare our method with DIF [4] and 3D-CODED [5]. Our
method achieves plausible shape reconstructions and can predict correspondence across shapes.



Figure H: Reconstruction from full observation of animals. We compare our method with DIF [4] and 3D-CODED [5]. Our
method achieves plausible shape reconstructions and can predict reliable correspondence across shapes.



Figure I: Reconstruction from partial observation of humans. We compare our method with DIF [4]. Our method reconstructs
shapes with multiple poses and large deformations. The characteristics of each subject is represented well.



Figure J: Reconstruction from partial observation of animals. We compare our method with DIF [4]. Our method reconstructs
shapes with multiple poses and large deformations. The characteristics of each subject is represented well.
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