
ShiftNAS: Improving One-shot NAS via Probability Shift Appendix

1. Training Settings
The training settings for ViT and CNN models are following Table 1.

Model Epochs Batch size Learning rate Weight decay Optimizer Augmentation

CNN 500 1024 5e-1 1e-5 SGD CropFlip+AutoAugment

ViT 500 1024 1e-3 5e-2 AdamW
CropFlip+RandAugment

+Cutmix+Mixup+random erasing

Table 1: Experimental configurations.

Algorithm 1 The Pytorch-style algorithm of supernet training.

Require: Supernet architecture S and weight w; Architecture generator AG; Sampling distribution B; training dataset
(X,Y ); criterion C; update frequency q; Optimizer for w and α, optimizer.

Ensure: Trained supernet weight w.
Initialize frequency count and checkpoint weight, count = 0 and wt−1=w;
while not convergence do

Clear gradients, optimizer.zero grad();
Sample a subnet computational resourceb, b ∼ B;
Sample a subnet architecture a, a = AG(b|α) ;
Sample mini-batch of data, (x, y)← (X,Y );
Compute loss, loss=C(S(x|w, a), y);
Compute ∇w ∇α, loss.backward();
Update w and α, optimizer.step();
count+=1;
if count==q then

Update wt=w and count=0;
Do Algorithm 2 with wt and wt−1;
Update wt−1=wt;

end if
end while

2. Training Algorithm
We provide a detailed account of the supernet training process in Algorithm 1. Unlike the uniform sampling approach,

we propose a dynamic distribution B to sample subnets in each iteration. The sampling distribution B is updated every q
iterations as shown in Algorithm 2. We calculate ∇B by performing two forward and backward passes on the current and
former supernet weight wt and wt−1. It should be noted that only a batch of data is used in each B update, which keeps the
time overhead at an acceptable level.



Algorithm 2 The Pytorch-style algorithm of distribution update.

Require: Supernet architecture S; Checkpoint and current weights wt−1, wt; Architecture generator AG; Sampling distri-
bution B; validation dataset (X ′, Y ′); criterion C; Optimizer for B, optimizer B.

Ensure: Updated distribution B.
Clear gradients, optimizer B.zero grad();
Sample a subnet computational resource, b ∼ B;
Sample a subnet architecture a, a = AG(b|α) ;
Sample mini-batch of data, (x′, y′)← (X ′, Y ′);
Compute losst−1, losst−1 = C(S(x′|wt−1, a),y′);
Compute and save∇Bt−1

, losst−1.backward();
Clear gradients, optimizer B.zero grad();
Compute losst, losst = C(S(x′|wt, a),y′);
Compute and save ∇Bt , losst.backward();
Compute∇B=∇Bt−1

-∇Bt
;

Update B, optimizer B.step();

Epoch 30 60 90 120

Kendall’s tau 0.24 0.63 0.75 0.72

Table 2: The Kendall’s tau values in different training stages.

3. More Ablation Study
Correlation between the gradient and the training sufficiency. In ShiftNAS, we utilize the gradient of ∇B=∇Bt−1

-
∇Bt to quantify the training sufficiency of subnets, and there is a curiosity about the relationship between the two. To address
this, we conducted an experiment on ViT-tiny space to investigate their correlation. Specifically, we followed the steps: 1) We
trained a supernet with few epochs using a uniform sampling strategy. 2) We randomly selected 30 subnets from the supernet
and calculated their scores ∇B=∇Bt−1

-∇Bt
based on the validation dataset. 3) These subnets were independently finetuned

for one epoch. 4) After finetuning, the loss variations of the sampled subnets on the validation dataset were recorded.
The Kendall’s tau values between the scores∇B and the loss variations are presented in Table 2. Our results demonstrate

a strong correlation between the gradient and the training sufficiency after training the supernet for 60 epochs.
Split steps of search space. In ShiftNAS, the search space is divided into several parts based on computational complexity,

e.g., FLOPs. The effect of steps on model performance is discussed here, using experiments carried out on ViT-tiny space
where each supernet is trained under the same training setting. The search space is split from 1.3 GFLOPs to 1.9 GFLOPs
with 0.2, 0.1, and 0.05 GFLOPs steps, respectively. As shown in Figure 1 (a), it can be observed that the 0.1 step obtains
the best performance in most cases. Empirically, a larger step leads to a smaller search space since the AG only needs to
search the optimal subnets along the steps. Therefore, these subnets sampled from a smaller search space can be trained more
sufficiently, which is also mentioned in [2]. However, a large step means that we cannot obtain a fine-grained optimal subnet.
Therefore, 0.1 steps are chosen for ShiftNAS to balance performance and deployment.

Update frequency of the sampling distribution vector. To investigate the effect of different update frequency, we
conducted experiments by setting the update frequency q as 50, 100, 500, and 1000 iterations. The results, shown in Figure 1
(b), indicate that the subnet performance decreases as the update frequency decreases, for different computational constraints.
This phenomenon suggests that the optimal sampling distribution varies under different training stages, and frequent updates
can help to better adapt to the changing training dynamics.

The efficiency of architecture generator. To validate the efficiency of the architecture generator (AG), we compared the
time required for AG and without AG when sampling subnets of different FLOPs. Without AG, we randomly sample subnets
until it finds one that meets the computational constraint. The experimental results, as shown in Figure 2, demonstrate that AG
can directly infer architectures of any computational complexity, while random sample takes hundreds or thousands of times
longer. For example, during searching ViT-tiny on ImageNet-1k, an additional 52 hours (1250iters× 500epochs× 0.4s) is
required.



Figure 1: FLOPs/Accuracy tradeoffs of ShiftNAS with different (a) steps, (b) update frequency

Figure 2: Sampling time comparison. Y label is logt.

4. Comparisons under AttentiveNAS search space
AttentiveNAS [3] has introduced a method to dynamically sample subnets during supernet training. However, this method

employs a more comprehensive search space than ours, as illustrated in Figure 9 in the AttentiveNAS Appendix. To ensure
a fair comparison, we have trained the supernet with 500 epochs on AttentiveNAS search space. The comparative results
are presented in Table 3. Notably, our ShiftCNN models can outperform the AttentiveNAS models under comparable FLOPs
constraints. Additionally, it is worth mentioning that ShiftNAS consumes fewer training epochs than AttentiveNAS due to
the utilization of the sandwich rule [4] in training the supernet.

5. Transfer for Segmentation Tasks
To assess the transferability of our proposed approach to other computer vision tasks, we have conducted experiments on

segmentation using the ADE20k dataset. In this regard, we have employed SegViT [5] as our framework and have replaced
its backbone with ShiftFormer-B. For fair comparison, the baseline backbone is ViT-Base [1], pre-trained on ImageNet1k.
The experimental results are reported in Table 4.



method Acc.@1 FLOPs(M) Training epochs

ShiftCNN-S 78.7 259 500
AttentiveNAS-A1 78.4 279 360×4=1440

ShiftCNN-B 80.4 453 500
AttentiveNAS-A4 79.8 444 360×4=1440

Table 3: Comparison of the effectiveness with AttentiveNAS.

Backbone Acc.@1 FLOPs(G)

ViT-Base 48.2 120.9
ShiftFormer-B 49.8 90.4

Table 4: Comparison of the effectiveness on the segmentaion task.

6. Visualization of the Searched Architectures
We show the searched architectures of ShiftNAS family models in Figure 3, including ShiftFormer-T, ShiftFormer-S,

ShiftFormer-B, ShiftCNN-S and ShiftCNN-B.
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Figure 3: The searched architectures of ShiftNAS family models.


