ShiftNAS: Improving One-shot NAS via Probability Shift Appendix

1. Training Settings

The training settings for ViT and CNN models are following Table 1.

<table>
<thead>
<tr>
<th>Model</th>
<th>Epochs</th>
<th>Batch size</th>
<th>Learning rate</th>
<th>Weight decay</th>
<th>Optimizer</th>
<th>Augmentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN</td>
<td>500</td>
<td>1024</td>
<td>5e-1</td>
<td>1e-5</td>
<td>SGD</td>
<td>CropFlip+AutoAugment</td>
</tr>
<tr>
<td>ViT</td>
<td>500</td>
<td>1024</td>
<td>1e-3</td>
<td>5e-2</td>
<td>AdamW</td>
<td>CropFlip+RandAugment +Cutmix+Mixup+random erasing</td>
</tr>
</tbody>
</table>

Table 1: Experimental configurations.

Algorithm 1 The Pytorch-style algorithm of supernet training.

Require: Supernet architecture S and weight w; Architecture generator AG; Sampling distribution B; training dataset (X,Y); criterion C; update frequency q; Optimizer for w and α, optimizer.

Ensure: Trained supernet weight w.

Initialize frequency count and checkpoint weight, $count = 0$ and $w_{t-1} = w$;

while not convergence do

Clear gradients, optimizer.zero_grad();
Sample a subnet computational resource b, $b \sim B$;
Sample a subnet architecture a, $a = AG(b|\alpha)$;
Sample mini-batch of data, $(x, y) \leftarrow (X, Y)$;
Compute loss, $loss = C(S(x|w, a), y)$;
Compute $\nabla_w, \nabla_\alpha, loss.backward();$
Update w and α, optimizer.step();
$count+=1$;

if $count==q$ then

Update $w_t=w$ and $count=0$;
Do Algorithm 2 with w_t and w_{t-1};
Update $w_{t-1}=w_t$;
end if
end while

2. Training Algorithm

We provide a detailed account of the supernet training process in Algorithm 1. Unlike the uniform sampling approach, we propose a dynamic distribution B to sample subnets in each iteration. The sampling distribution B is updated every q iterations as shown in Algorithm 2. We calculate ∇_B by performing two forward and backward passes on the current and former supernet weight w_t and w_{t-1}. It should be noted that only a batch of data is used in each B update, which keeps the time overhead at an acceptable level.
this, we conducted an experiment on ViT-tiny space to investigate their correlation. Specifically, we followed the steps:

1) We randomly selected 30 subnets from the supernet and calculated their scores \(\nabla \) with 0.2, 0.1, and 0.05 GFLOPs steps, respectively. As shown in Figure 1 (a), it can be observed that the 0.1 step obtains the best performance in most cases. Empirically, a larger step leads to a smaller search space since the AG only needs to search the optimal subnets along the steps. Therefore, these subnets sampled from a smaller search space can be trained more sufficiently, which is also mentioned in [2]. However, a large step means that we cannot obtain a fine-grained optimal subnet.

2) After finetuning, the loss variations of the sampled subnets on the validation dataset were recorded. The Kendall’s tau values between the scores \(\nabla B \) and the loss variations are presented in Table 2. Our results demonstrate a strong correlation between the gradient and the training sufficiency after training the supernet for 60 epochs.

3. More Ablation Study

Correlation between the gradient and the training sufficiency. In ShiftNAS, we utilize the gradient of \(\nabla B = \nabla B_t - \nabla B \) to quantify the training sufficiency of subnets, and there is a curiosity about the relationship between the two. To address this, we conducted an experiment on ViT-tiny space to investigate their correlation. Specifically, we followed the steps: 1) We trained a supernet with few epochs using a uniform sampling strategy. 2) We randomly selected 30 subnets from the supernet and calculated their scores \(\nabla B \) based on the validation dataset. 3) These subnets were independently finetuned for one epoch. 4) After finetuning, the loss variations of the sampled subnets on the validation dataset were recorded.

The Kendall’s tau values between the scores \(\nabla B \) and the loss variations are presented in Table 2. Our results demonstrate a strong correlation between the gradient and the training sufficiency after training the supernet for 60 epochs.

Split steps of search space. In ShiftNAS, the search space is divided into several parts based on computational complexity, e.g., FLOPs. The effect of steps on model performance is discussed here, using experiments carried out on ViT-tiny space where each supernet is trained under the same training setting. The search space is split from 1.3 GFLOPs to 1.9 GFLOPs with 0.2, 0.1, and 0.05 GFLOPs steps, respectively. As shown in Figure 1 (a), it can be observed that the 0.1 step obtains the best performance in most cases. Empirically, a larger step leads to a smaller search space since the AG only needs to search the optimal subnets along the steps. Therefore, these subnets sampled from a smaller search space can be trained more sufficiently, which is also mentioned in [2]. However, a large step means that we cannot obtain a fine-grained optimal subnet. Therefore, 0.1 steps are chosen for ShiftNAS to balance performance and deployment.

Update frequency of the sampling distribution vector. To investigate the effect of different update frequency, we conducted experiments by setting the update frequency \(g \) as 50, 100, 500, and 1000 iterations. The results, shown in Figure 1 (b), indicate that the subnet performance decreases as the update frequency decreases, for different computational constraints. This phenomenon suggests that the optimal sampling distribution varies under different training stages, and frequent updates can help to better adapt to the changing training dynamics.

The efficiency of architecture generator. To validate the efficiency of the architecture generator (AG), we compared the time required for AG and without AG when sampling subnets of different FLOPs. Without AG, we randomly sample subnets until it finds one that meets the computational constraint. The experimental results, as shown in Figure 2, demonstrate that AG can directly infer architectures of any computational complexity, while random sample takes hundreds or thousands of times longer. For example, during searching ViT-tiny on ImageNet-1k, an additional 52 hours (1250iters × 500epochs × 0.4s) is required.

<table>
<thead>
<tr>
<th>Epoch</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kendall’s tau</td>
<td>0.24</td>
<td>0.63</td>
<td>0.75</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Table 2: The Kendall’s tau values in different training stages.
4. Comparisons under AttentiveNAS search space

AttentiveNAS [3] has introduced a method to dynamically sample subnets during supernet training. However, this method employs a more comprehensive search space than ours, as illustrated in Figure 9 in the AttentiveNAS Appendix. To ensure a fair comparison, we have trained the supernet with 500 epochs on AttentiveNAS search space. The comparative results are presented in Table 3. Notably, our ShiftCNN models can outperform the AttentiveNAS models under comparable FLOPs constraints. Additionally, it is worth mentioning that ShiftNAS consumes fewer training epochs than AttentiveNAS due to the utilization of the sandwich rule [4] in training the supernet.

5. Transfer for Segmentation Tasks

To assess the transferability of our proposed approach to other computer vision tasks, we have conducted experiments on segmentation using the ADE20k dataset. In this regard, we have employed SegViT [5] as our framework and have replaced its backbone with ShiftFormer-B. For fair comparison, the baseline backbone is ViT-Base [1], pre-trained on ImageNet1k. The experimental results are reported in Table 4.
Table 3: Comparison of the effectiveness with AttentiveNAS.

<table>
<thead>
<tr>
<th>Backbone</th>
<th>Acc.@1</th>
<th>FLOPs(M)</th>
<th>Training epochs</th>
</tr>
</thead>
<tbody>
<tr>
<td>ShiftCNN-S</td>
<td>78.7</td>
<td>259</td>
<td>500</td>
</tr>
<tr>
<td>AttentiveNAS-A1</td>
<td>78.4</td>
<td>279</td>
<td>360×4=1440</td>
</tr>
<tr>
<td>ShiftCNN-B</td>
<td>80.4</td>
<td>453</td>
<td>500</td>
</tr>
<tr>
<td>AttentiveNAS-A4</td>
<td>79.8</td>
<td>444</td>
<td>360×4=1440</td>
</tr>
</tbody>
</table>

Table 4: Comparison of the effectiveness on the segmentation task.

<table>
<thead>
<tr>
<th>Backbone</th>
<th>Acc.@1</th>
<th>FLOPs(G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ViT-Base</td>
<td>48.2</td>
<td>120.9</td>
</tr>
<tr>
<td>ShiftFormer-B</td>
<td>49.8</td>
<td>90.4</td>
</tr>
</tbody>
</table>

6. Visualization of the Searched Architectures

We show the searched architectures of ShiftNAS family models in Figure 3, including ShiftFormer-T, ShiftFormer-S, ShiftFormer-B, ShiftCNN-S and ShiftCNN-B.

References

Figure 3: The searched architectures of ShiftNAS family models.