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Abstract

This supplementary material provides detailed network
architecture of our proposed noise generator, the configura-
tion of the discriminator architecture, the architectural de-
sign of the Fourier transformer block (FTB), an extra noise
model analysis, and more visual comparison results.

1. Detailed Architecture of Noise Generator
To synthesize signal-independent noise, we employ a

standard 2D residual U-Net-style structure [4]. It com-
prises an encoder block for feature compression and a de-
coder block for pixel-wise noise prediction. The architec-
ture also employs skip connections that concatenate output
features from encoder layers to corresponding decoder lay-
ers, as depicted in Fig. 1. Notably, the U-Net network takes
in and outputs images with four channels. The network ar-
chitecture comprises four encoder and four decoder blocks.
Each encoder block consists of a 3× 3 convolutional layer,
followed by a SeLU activation layer and a stride-2 convo-
lutional layer aimed at down-sampling the input images.
On the other hand, each decoder block includes a stride-
2 transpose-convolutional layer for up-sampling the feature
maps, followed by a 3 × 3 convolutional layer and a SeLU
activation layer to recover fine-grained details.

2. Fourier Transformer Discriminator
2.1. Detailed Architecture Configurations

In this study, we present a detailed account of the archi-
tecture configurations of the proposed Fourier Transformer
Discriminator (FTD), as documented in Table. 1. The term
”Layer Flatten” is utilized herein to describe the process of
patch splitting and subsequent linear transformation. The
term ”FT-Blocks” represents the proposed Fourier trans-
former block. The term ”V-Block” represents the vanilla

Table 1. Architecture configuration of our proposed Fourier trans-
former discriminator. ⋆ indicates that this layer is optional. See
the main text for more explanation.

Fourier transformer discriminator
Layer Input Shape Output Shape

Linear Flatten 64× 64× 4 (16× 16)× 64
FT-Block1-1 (16× 16)× 64 (16× 16)× 64

FT-Block1-2⋆ (16× 16)× 64 (16× 16)× 64
FT-Block1-3⋆ (16× 16)× 64 (16× 16)× 64
AvgPooling (16× 16)× 64 (8× 8)× 64
Concatenate (8× 8)× 64 (8× 8)× 128
FT-Block2-1 (8× 8)× 128 (8× 8)× 128

FT-Block2-2⋆ (8× 8)× 128 (8× 8)× 128
FT-Block2-3⋆ (8× 8)× 128 (8× 8)× 128
AvgPooling (8× 8)× 128 (4× 4)× 128
Concatenate (4× 4)× 128 (4× 4)× 256
FT-Block3-1 (4× 4)× 256 (4× 4)× 256

FT-Block3-2⋆ (4× 4)× 256 (4× 4)× 256
FT-Block3-3⋆ (4× 4)× 256 (4× 4)× 256

CLS Token (4× 4)× 256 (4× 4 + 1)× 256
V-Block (4× 4 + 1)× 256 (4× 4 + 1)× 256

CLS Head (4× 4 + 1)× 256 1

transformer block. At every stage, the resulting feature map
is concatenated with a sequence of the input image at dif-
ferent scales. In the conclusive stage, a CLS token is in-
troduced, and a vanilla transformer block is employed to
establish correspondence between the extracted representa-
tion and the introduced CLS token. Ultimately, only the
CLS token is selected by the classification Head to predict
the authenticity- real/fake.

2.2. Fourier Transformer Block

Inspired by fast Fourier Convolution (FFC) [3], we pro-
pose a transformer-based module, namely Fourier trans-
former block (FTB), which is based on a pixel-wise fast



Figure 1. Network architecture of our proposed noise generator.

Figure 2. Architecture design of Fourier transformer block (FTB). ”
⊕

” denotes element-wise sum. The proposed FTB splits the input
sequence into two parallel branches: i) spatial branch uses vanilla transformer blocks, and ii) spectral branch uses a vanilla transformer
block and a spectral transformer block. See the main text for more explanation.

Fourier transform (FFT) [1]. The architecture of our pro-
posed FTB is shown in Fig 2. Fundamentally, the FTB com-
prises two interconnected branches: a spatial branch that
performs standard operations on half of input feature se-
quences and a spectral branch that operates on the other half
of the sequences in the spectral domain. Each branch is ca-
pable of capturing complementary information with varying
receptive fields, and information exchange between these
branches is internal to the FTB.

We adopt two vanilla transformer blocks to extract the
feature sequences of the image in the spatial domain, and
one of the extracted feature sequences is exchanged to the
spectral domain. In the spectral domain, one vanilla trans-
former block is employed to retain the spatial feature in-
formation of the input sequence and exchange it into the
spatial domain, while the other spectral transformer block
is adopted to extract the noise features in the spectral do-
main. As the spectral transformer block proposed in FFC



is designed to enlarge the receptive field, modifications are
made to it in two ways to enhance noise feature extraction.
First, we remove the local Fourier unit to reduce the com-
putational complexity. Next, we modify the Fourier unit
block. The original implementation of the spectral trans-
former block uses a Real FFT2d and a convolution layer.
We replace this architecture with Real FFT1d and a vanilla
transformer block. Real FFT1d can be applied only to real
valued signals, and inverse real FFT1d ensures that the out-
put is real valued. Real FFT1d uses only half of the spec-
trum compared to the FFT. Specifically, our proposed spec-
tral transformer block makes the following steps:

a) applies Real FFT1d to an input sequence

Real FFT1d = RHW×C → C
HW
2 ×C ; (1)

and concatenates real and imaginary parts

Complex To Real = C
HW
2 ×C → R

HW
2 ×2C ; (2)

b) applies a vanilla transformer block in the frequency do-
main

Transformer Block = R
HW
2 ×2C → R

HW
2 ×2C ; (3)

c) applies inverse transform to recover a spatial structure

Real To Complex = R
HW
2 ×2C → C

HW
2 ×C ; (4)

Inverse Real FFT1d = C
HW
2 ×C → RHW×C . (5)

Ultimately, the outputs of the spatial and spectral
branches are merged, forming a comprehensive represen-
tation. The proposed Fourier transformer blocks (FTBs) are
fully differentiable and can be effortlessly incorporated in-
stead of conventional transformer blocks. By operating in
both the spatial and spectral domains, the FTBs enable the
discriminator to consider both global and local noise distri-
bution information, which is a critical aspect for effectively
discriminating high-noise-level raw images.

3. Extra Noise Model Analysis
In order to accurately reflect the stochastic properties of

the noise, it is desired that the noise model provide distinct
noise samples during each forward pass. Fig. 3 exhibits
the noise images produced by five separate forward passes
of our noise model, illustrating the generation of different
noise samples in each pass.

To further demonstrate the effectiveness and generaliz-
ability of our noise model, we utilize a single learned model
to generate noise samples at varying ISO levels. The visu-
alization results can be found in Fig. 4. The results demon-
strate the effectiveness and power generation capability of
our noise model.

4. Extra Visualization of Denoising Results
In this section, we present more visual comparison re-

sults on different datasets (SID, ELD, LRD) as shown in
Fig. 5, 6, 7. In comparison to state-of-the-art methods, our
method provides competitive denoising results with visual
pleasurable.
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Figure 3. Noise samples generated by our method in five different forward passes. While the distribution of each sample remains constant,
distinct discrepancies can be noticed among the generated noise pixels.

Figure 4. A single learned model generates noise at different ISO levels. First column: clean raw image. Second column: sampled image
contaminated by signal-dependent noise. Third column: synthesized signal-independent noise. Fourth column: synthesized pseudo-noisy
raw image (second column

⊕
third column). Fifth column: real low-light noisy raw image.



Figure 5. Raw image denoising comparison with state-of-the-art methods on low-light noisy raw images from the SID dataset [2]. Best
viewed in color and by zooming in.

Figure 6. Raw image denoising comparison with state-of-the-art methods on low-light noisy raw images from the ELD dataset [5]. Best
viewed in color and by zooming in.



Figure 7. Raw image denoising comparison with state-of-the-art methods on low-light noisy raw images from our LRD dataset. Best
viewed in color and by zooming in.


