
A. Proof of Theorem 1
To prove Thm. 1, we first introduce the theory of scenario optimisation. Let us take a look at the optimization problem

below:

min
�2�✓Rm

b>�,

s.t. f!(�)  0, 8! 2 ⌦,
(4)

where f! is a convex and continuous function of the m-dimensional optimization variable � for every ! 2 ⌦, and both ⌦
and � are convex and closed. It is difficult to solve (4), since there are infinitely many constraints. In [9], Calafiore et al.
proposed the following scenario optimisation to solve (4) with a PAC guarantee.

Definition 3 Let P be a probability measure on ⌦. The scenario approach to handle the optimization problem (4) is to solve
the following problem. We extract K independent and identically distributed (i.i.d.) samples (!i)Ki=1 from ⌦ according to
the probability measure P:

min
�2�✓Rm

b>�,

s.t.
K̂

i=1

f!i(�)  0.
(5)

The scenario optimisation only considers a finite subset of constraints. In [9, 10], a PAC guarantee between the scenario
solution in (5) and its original optimization in (4) can be constructed with sufficient samples.

Theorem 2 ([10]) If (5) is feasible and has an optimal solution �⇤
K , and

✏ � 2

K
(ln

1

⌘
+m), (6)

where K is the number of samples, and ✏ and ⌘ are the pre-defined error rate and the significance level, respectively, then
with confidence at least 1 � ⌘, the optimal �⇤

K satisfies all the constraints in ⌦ but only at most a fraction of probability
measure ✏, i.e., P(f!(�⇤

K) > 0)  ✏.

In DEEPPAC [51], scenario optimisation is used for robustness verification of classification DNNs. To adapt Thm. 2 to
our settings, where stochastic output is considered, we must describe both the sampling distribution ⇡ and the stochasticity
in the trajectory prediction model in the probability distribution P.

For label robustness, stochasticity in �(X) only comes from the stochasticity of the output g(X). We regard the model
g as a random variable g(X,!) : (⌦,F ,PrX) ! (R2⇥Tf ,B(R2⇥Tf )), where (⌦,F ,PrX) is the probability space of the
stochasticity in g(X), and B(·) is the Borel �-algebra, i.e., the �-algebra generated by the open sets. Now we consider the
product measurable space (B(X̂, r) ⇥ ⌦,B(B(X̂, r)) ⇥ F) and we define the probability measure P on it according to the
sampling distribution ⇡ and the probability measure PrX in the standard way: For B 2 B(B(X̂, r)) and F 2 F , the measure
of the measurable rectangle B ⇥ F is

P(B ⇥ F ) =

Z

B
PrX(F )⇡(dX);

it is easy to see that P is a probability measure on the semi-ring of the measurable rectangles in B(B(X̂, r))⇥F , and thus it
can be uniquely extended to a probability measure, still denoted by P, on (B(X̂, r)⇥⌦,B(B(X̂, r))⇥F). When sampling in
B(X̂, r) according to ⇡, we are actually sampling in the probability space (B(X̂, r)⇥⌦,B(B(X̂, r))⇥F ,P), so according
to Thm. 2, where the dimensionality m = 2Tp(N + 1) + 1, it suffices to prove Thm. 1.

For pure robustness, stochasticity in �(X) comes from the stochasticity of both g(X) and g(X̂), so we sample in the
measurable space (B(X̂, r)⇥⌦ ⇥⌦,B(B(X̂, r))⇥F ⇥F), and the probability of a measurable rectangle B ⇥ F1 ⇥ F2 is

P(B ⇥ F1 ⇥ F2) =

Z

B
PrX(F1)⇡(dX) · PrX̂(F2).



By measure extension, P is a probability measure on (B(X̂, r)⇥⌦⇥⌦,B(B(X̂, r))⇥F⇥F). With the same dimensionality
m = 2Tp(N + 1) + 1, Thm. 1 is proved.

The deduced PAC-model robustness is obviously for label robustness: When maxX2B(X̂,r)
e�(X) + �⇤  s, with confi-

dence 1� ⌘ we have

P(�(X)  s) � P(�(X)  e�(X) + �⇤) � P(|e�(X)��(X)|  �⇤) � 1� ✏,

which implies that g is PAC-model label-robust in B(X̂, r). As for pure robustness, with the same deduction, when
maxX2B(X̂,r)

e�(X) + �⇤  s, with confidence 1� ⌘ we have P(�(X)  s) � 1� ✏, indicating that with a PAC guarantee,
D(Y, Ŷ )  s holds for any Y 2 g(X) and any Ŷ 2 g(X̂), which is a stronger property than the pure robustness defined in
Def. 2.

It is worth mentioning that, even if we use focused learning detailed in Appendix B, the PAC guarantee given by Thm. 1
will not be violated, since the PAC guarantee is constructed only in the second learning phase, while we only obtain an affine
function template with fewer coefficients to be determined in the first learning phase.

B. Focused Learning
We employ a focused learning procedure for PAC model learning first described in [51]. The basic idea involves splitting

the model learning stage into two, more manageable, subphases. The first subphase involves extracting K key features from
the model based on the K largest coefficient magnitudes. In the second subphase we optimize our PAC model with respect to
only those previously found key features. The main idea of this procedure is outlined below:

1. First learning phase: We learn the scores, i.e., ADEs, �t=1..T1 for T1 i.i.d. samples from the input region B(x̂, r).
This LP problem has d variables with T1 constraints. For large datasets this LP problem is still too large, and so we
can instead use linear regression to boost the learning time. After solving the linear problem, we find the K largest
coefficient magnitudes, and denote the set of corresponding features by Key(K) ✓ {1, x1, ..., xd}.

2. Second learning phase: We learn the scores �t=1..T2 for T2 i.i.d. samples from B(x̂, r). Rather than solving an LP
problem for all d variables, we fix the non-key coefficients and generate constraints for only our K key features. The
solution to this LP problem determines the coefficients of these key features Key(K).

With focused learning, rather than optimizing a large LP problem with d variables and T1+T2 constraints, we solve only one
LP problem with K  d variables and T2 constraints. Moreover, given a predetermined significance ⌘ and error rate ✏, we
can determine an appropriate number of key features K and sample size T2 satisfying K  ✏T2

2 � ln 1
⌘ �1 [51, Theorem 2.5].

r ✏ ⌘ T1 T2

Traj++

0.03 0.01 0.01

30000 12000
MemoNet 20000 12000

AgentFormer 30000 12000
MID 4000 3000

Table 6. Detailed hyperparameter configurations for scenario optimization of each trajectory forecasting model.

C. Robustness Properties for ADEK

In our experiment, we use a modified version of ADE, the minimum average displacement error of K trajectory samples,
which is a standard metric for trajectory prediction [27, 65, 66, 62, 17]. Formally, it is defined as

ADEK(Y, Y ) =
1

T
min

1kK

TX

t=1

kyt,(k) � ytk2,

where Y = {(y1,(k), . . . , yT,(k)) | k = 1, . . . ,K} is a set of K trajactory samples, and yt,(k) is the position at time t in the
k-th sample. In the experiment, we choose K = 20.

In Sect. 4 of the paper, we focus on the label/pure robustness properties with the metric D = ADE for simplicity. The
robustness properties with ADEK needs a slight modification. We state it as follows:



Definition 4 (Label Robustness for ADEK) Let X̂ = (X̂0, X̂1, . . . , X̂N ) be the past trajectories of the to-be-predicted
agent and its N neighbouring agents, and Yf its ground truth of the future trajectories of the to-be-predicted agent. Given a
prediction model g, an evaluation metric D, a safety constant s, then g is label-robust at X̂ w.r.t. the perturbation radius r > 0
if for any Xi 2 B(X̂i, r) (i = 0, 1, . . . , N ) and any Y 2 g(X0, X1, . . . , XN ) with |Y| = K, we have ADEK(Y, Yf)  s.

Definition 5 (Pure Robustness for ADEK) Let X̂ = (X̂0, X̂1, . . . , X̂N ) be the past trajectories of the to-be-predicted
agent and its N neighbouring agents. Given a prediction model g, an evaluation metric D, a safety constant s, then g
is purely robust at X̂ w.r.t. the perturbation radius r > 0 if for any Xi 2 B(X̂i, r) (i = 0, 1, . . . , N ) and any any
Y 2 g(X0, X1, . . . , XN ) with |Y| = K, there exists Ŷ 2 g(X̂), s.t. ADEK(Y, Ŷ )  s.

The PAC guarantee constructed in Thm. 1 will not be violated, where we only need to modify the measurable space as
(B(X̂, r)⇥⌦K ,B(B(X̂, r))⇥FK) for label robustness, or (B(X̂, r)⇥⌦K⇥⌦,B(B(X̂, r))⇥FK⇥F) for pure robustness.
The probability P, as the independent coupling, can be constructed in a quite similar way as that in Appendix B, first defined
on the semi-ring of the measurable rectangles, and then uniquely extended to the �-algebra generated by it.

D. Experiments on SDD
We conduct experiments on samples from the Stanford Drone Dataset (SDD) with r = 2 pixels, ⌘ = 0.01 and ✏ = 0.01.

As shown in Tab. 7, TRAJPAC shows the similar good performance as in ETH/UCY. The learning time of our method in
SDD is also as little as in ETH/UCY.

Scene ID Label Robustness Pure Robustness
Traj++ Memo MID Traj++ Memo MID

quad0 (84, 5) 7† 3 3 7† 3 3
quad3 (84, 9) 7† # 7 7† # #
nexus5 (588, 10) 7† 3 # 7† # 3

Table 7. Label/pure robustness verification on SDD with the ADE20 metric, where the safety constant is 50 pixels. Marks are the same as
Tab. 1.

E. Experiments with varying values of r
r = 0.03m is an empirical value. We chose this value as perturbation radius because it is small enough, yet it already

has a significant impact on the accuracy of predictions. We also conducted experiments with r = 0.05 and 0.1. Please refer
to Tab. 8. As the perturbation radius grows larger, the ADE PAC bounds for different models generally expand yet they are
still tight comparing to maximum sampled ADE. This demonstrates that the ADE PAC bound can remain unaffected with the
perturbation radius increasing.

methods r label bound max adver pure bound max adver

Memo
0.03 3 0.98 0.81 0.73 3 0.35 0.23 0.13
0.05 # 1.12 0.87 0.82 3 0.47 0.32 0.25
0.1 7 1.49 1.14 1.19 # 0.72 0.49 0.41

Traj++
0.03 # 1.01 0.86 0.65 3 0.45 0.37 0.18
0.05 # 1.07 0.86 0.86 3 0.48 0.38 0.20
0.1 # 1.12 0.91 0.84 # 0.57 0.43 0.14

Table 8. Label/pure robustness verification of Memonet/Trajectron++ on Zara1 (4430,69) (from UCY) with the corresponding ADE values
(bound/max/adver indicate PAC bound/max sampled/adversarial) in three different perturbation radii.


