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1. More Results
1.1. Results on Different Frames of the Same Person

Our model can deal with different frames of the same person in the video well as shown in Fig. 1.

1.2. Results on Fine-grained Control

As shown in the Fig. 2, text-driven approaches like StyleCLIP fail to distinguish between round and rectangle glasses

shapes even after tuning prompts using “black round glasses” and “black square thick-rimmed glasses”, while our model can

transfer the glasses successfully. Text can specify high-level description but may fail to deliver fine-grained control.

2. The Effect of Backbone
To demonstrate the effectiveness of taking CLIP [8] as our visual encoder, we compare with several baseline encoders

including ViT [2], SWIN [5], SWIN-v2 [5], VGG19 [10], and DETR [1], covering both transformer-based and convolution-

based backbones. As shown in Fig. 3, with CLIP visual encoders, the facial attributes can be transferred successfully, while

the other encoders fail to do so.
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Figure 1: Results on different frames of the same person. The clipart © from Open Peeps [11].
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Figure 2: Results on fine-grained control. The clipart © from Open Peeps [11].
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Figure 3: The effect of different visual backbones. The clipart © from Open Peeps [11].

3. More Comparisons
We also compare our method with two related works: Mind the GAP (MTG) [12] by shifting domain based on one shot,

and StyleGAN-NADA (SG-NADA) [3] by leveraging the CLIP model for domain adaptation. The results are shown in Fig. 4

and Fig. 5. As can be seen, MTG is often bothered by the color distribution of reference images and fails to maintain the

color and texture of original images. StyleGAN-NADA often generates more cartoon-like images, which are not realistic.
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Figure 4: Comparison of different methods for clipart-driven face photo editing. The clipart © from Open Peeps [11].
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Figure 5: Comparison of different methods for clipart-driven face photo editing. The clipart © from Vue Color Avatar [4],

cartoon from Disney Animation, and sketches from Toonify [7], PSP [9] and ArtLine [6].
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