
Appendix
1. Proof of Eq. 2

From the definition of KL divergence, Eq. 2 can be for-
mulated as follows:

KL(Pp(x)||P̂p(x))
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)]
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where

Lvar(f(x)) = log(Eu[f(x)])− Ep[log(f(x))].
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3. Training Details for T-HOneCls

Training Details A detailed description of the self-
calibrated optimization is provided in Algorithm 1. The
hyperspectral image classification is a one-shot image in-
put. Stochastic gradient descent degenerates into gradient
descent in the process of network optimization. A global
proportional random stratified sampler (the sampling opera-
tion in Algorithm 1) is also proposed to recover the stochas-
tic gradient descent. The detailed sampling algorithm is de-
scribed in the following:

Algorithm 1: Self-calibrated optimization
Input: H : hyperspectral imagery; Min : a set of

training masks; o : the order of the Taylor
series; α : smoothing factor; npb : number of
pseudo batches; T : training epochs; Snet :
student network; Tnet : teacher network.

Output: The weight of the teacher network

Initialize the weight of the student network (θS) and
the teacher network (θT )

for t=1 to T do
Mout =Sampling(Min, npb)
for e=1 to npb do

pS = Snet(H)
pT = Tnet(H)
LS = LTar(pS ,Mout[0][e],Mout[1][e])
+βLkl(pS , pT ,Mout[0][e],Mout[1][e])

update θS
update θT : θeT = αθe−1

T + (1− α)θeS

Algorithm 2: Global proportional random strati-
fied sampling

Input: Min =
{
mi

in

}1

i=0
: a set of training masks;

npb:Number of pseudo batches.
Output: Mout: a list of sets of stratified masks

Mout ← [] // Initialize an empty list
for k=0 to 1 do

Ik ←
{
j|mkj

in = 1
}

Ik ← Random shuffle(Ik)
Mout[k]← []
Lk = |Ik|//npb

while |Ik| ≥ Lk do
r ← Ik.pop(Lk)
// Fetch Lk samples from Ik
Mout[k].push(r)

Global Proportional Random Stratified Sampler
Stochastic gradient descent is the mainstream optimization
approach at present, so some objective functions are used
based on stochastic gradient descent [21, 3, 10, 42, 35, 7].
Whether there will be a problem when these objective
functions encounter gradient descent is not clear. As
the Taylor variational loss can be optimized not only
using stochastic gradient descent, but also using gradient
descent based optimization methods, in order to ensure
the adaptability of the proposed framework to different
objective functions, we propose the global proportional
random stratified sampler, which can recover the stochastic
gradient descent by constructing pseudo-batches (such as



Figure 6: The description of Global proportional random
stratified sampler.

Fig. 6).
The proposed sampler is summarized in Algorithm. 2.

The input of this sampler is a positive mask (m1
in) and an

unlabeled mask (m0
in), and the data used for training are la-

beled as 1 and the other data are labeled as 0. The key idea
of the proposed sampler is to randomly train |I1|//npb pos-
itive samples and |I2|//npb unlabeled samples each time
(stratified), where each batch has both positive samples and
unlabeled samples (proportional). By constructing pseudo-
batches, we can meet the requirements of the current ob-
jective function for stochastic gradients. The output of the
sampler is a list of positive and unlabeled masks, with the
data used for training in each batch labeled with 1 and the
rest labeled with 0.

4. The Description of Datasets and Hyperparame-
ters

The HongHu, LongKou and HanChuan HSIs, along with
the ground truth and spectral curves as examples, are shown
in Fig. 7. It can be seen from the Fig. 7 that the spectral
curves of vegetation are very similar, and it is very chal-
lenging to identify the specific vegetation types. The hyper-
parameters were shown in Table 7-Table 9.

5. The Structure of FreeOCNet

The FreeOCNet includes encoder, decoder and lateral
connection (Fig. 8). The basic module in encoder is
a spectral-spatial-attention (SSA)-convolution layer (Conv
3)-Group normalization-rectified linear unit (ReLU), and
the mdoule of a Conv 3× 3 with stride 2 to reduce the spa-
tial size. A lightweight decoder is used, which consists of
a Conv 3 × 3 layer and 2× upsampling layer and a fixed
number of channels. A Conv 1 × 1 layer is used in lateral
connection to reduce the number of channels in the encoder.

6. More Experimental Results

The distribution maps for the HongHu, LongKou and
HanChuan datasets are shown in Fig. 9a, Fig. 9b and
Fig. 9c, respectively. The Precision and Recall for the
HongHu, HanChuan and LongKou datasets are shown in
Table 10, Table 11 and Table 12, respectively. As shown in
this subsection, other methods cannot obtain high precision
and recall at the same time, that is, these methods cannot

(a) HongHu Dataset

(b) LongKou Dataset

(c) HanChuan Dataset

Figure 7: UAV HSIs with ground truth and spectral curves.

Figure 8: The description of FreeOCNet.

find a balance between the overfitting and underfitting of the
training data. This balance was found by T-HOneCls, and a
good F1-score was obtained by T-HOneCls in all tasks.

7. More Experimental Results for the Training Pro-
cess and Training Samples

The curves of the positive class and the total loss of the
different positive training samples of rape and cabbage are



Dataset Classes selected for classification
Labeled samples
for each class

Unlabeled samples
for each class

Validation samples
for each class Hyperparameters

HongHu (270 channels)
Cotton, Rape,
Chinese cabbage,
Cabbage, Tuber mustard

100 4000 290878

Pseudo batch number: 10
Epochs:150
Optimizer: SGD (lr=0.0001, momentum=0.9, weight decay=0.0001)
with ExponentialLR (gamma=0.995)

LongKou (270 channels)
Corn, Sesame,
Broad-leaf soybean,
Rice

100 4000 203642

Pseudo batch number: 10
Epochs: 150
Optimizer: SGD (lr=0.0001, momentum=0.9, weight decay=0.0001)
with ExponentialLr (gamma=0.995)

HanChuan (274 channels)
Strawberry, Cowpea,
Soybean, Watermelon,
Road, Water

100 4000 255930

Pseudo batch number: 10
Epochs: 170
Optimizer: SGD (lr=0.0002, momentum=0.9, weight decay=0.0001)
with ExponentialLr (gamma=0.995)

Table 7: Details of the UAV hyperspectral datasets and hyperparameters

Dataset Classes
Labeled samples
for each class

Unlabeled samples
for each class

Validation samples
for each class Hyperparameters

India Pines (200 channels) 2,11 100 4000 10149

Pseudo batch number:10
Epoch:300
Optimizer:SGD(lr=0.0001,momentum=0.9,weight decay=0.0001)
with ExponentialLR(gamma=0.995)

Pavia University (103 channels) 2 100 4000 42676

Pseudo batch number:10
Epoch:100
Optimizer:SGD(lr=0.0001,momentum=0.9,weight decay=0.0001)
with ExponentialLr(gamma=0.995)

8 100 4000 42676

Pseudo batch number:10
Epoch:300
Optimizer:SGD(lr=0.0001,momentum=0.9,weight decay=0.0001)
with ExponentialLr(gamma=0.995)

Table 8: Details of the India Pines and Pavia University datasets and hyperparameters

Dataset Classes
Labeled samples
for positive class Unlabeled samples Validation samples Hyperparameters

CIFAR-10
Positive:0,1,8,9
Negative:2,3,4,5,6,7 900 45000 10000

Epoch:50
Order:1
Optimizer:Adam(lr=3e-5,betas=(0.5, 0.99))

STL-10
Positive:0,2,3,8,9
Negative:1,4,5,6,7 900 99000 8000

Epoch:50
Order:3
Optimizer:Adam(lr=3e-5,betas=(0.5,0.99))

Table 9: Details of the CIFAR-10 and STL-10 datasets and hyperparameters

Class Class prior-based classifiers Label noise representation learning Class prior-free classifiers
nnPU OC Loss MSE Loss GCE Loss SCE Loss TCE Loss PAN vPU T-HOneCls

Cotton 99.34/99.54 99.31/99.57 99.98/9.52 100.00/10.19 99.94/93.08 100.00/11.29 100.00/9.09 99.94/0.94 99.96/96.40
Rape 69.79/99.58 69.38/99.71 99.86/93.03 99.86/93.73 99.88/94.95 99.78/95.59 99.93/64.81 99.74/4.34 99.77/95.92

Chinese cabbage 0.00/0.00 81.19/96.29 95.96/91.40 97.81/90.60 97.58/90.27 97.31/91.27 98.19/87.11 97.01/14.28 95.97/92.60
Cabbage 54.18/54.48 81.55/99.91 99.87/98.54 99.89/98.32 99.89/98.37 99.85/98.75 99.92/96.50 99.88/21.12 99.79/98.95

Tuber mustard 13.63/99.73 13.36/99.88 99.00/91.75 98.68/93.57 98.72/92.49 98.41/94.87 99.33/86.00 99.30/13.19 98.56/96.24

Table 10: The Precision/Recall for the HongHu dataset

shown in Fig. 10 and Fig. 11, respectively. The curves of the
F1-score are also shown. The variational loss using fewer
training samples leads to the gradient domination optimiza-
tion process of unlabeled samples at the beginning of the
training, which makes the loss of positive classes rise at the
beginning of the training. Although the loss of the positive
samples will decreases as the training progresses, for exam-
ple 40, 100 or 400, the F1-score is unstable, and determin-
ing the optimal training epochs is very challenging without

using additional data. In the classification of rape in the
HongHu dataset, 4000 positive training samples can obtain
a stable F1-score, but the F1-score of cabbage is still un-
stable. However, this shortcoming is overcome by the pro-
posed T-HOneCls, and a stable F1-score can be obtained, as
shown in Fig. 10f and Fig. 11f.



(a) Distribution maps for the HongHu dataset.

(b) Distribution maps for the LongKou dataset.

(c) Distribution maps for the HanChuan dataset.

Figure 9: Distribution maps for the UAV hyperspectral datasets. The maps with the best F1-score are displayed for five
experiments.

8. More Experimental Results for the Order of the
Taylor Series

The results for cotton and five other ground objects are
displayed in Fig. 12. The most important contribution of

this paper is to point out that the reason for the poor per-
formance of variational loss is that the gradient of the unla-
beled data is given too much weight. To solve this problem,
Taylor expansion is introduced in the variational loss, so as



Class Class prior-based classifiers Label noise representation learning Class prior-free classifiers
nnPU OC Loss MSE Loss GCE Loss SCE Loss TCE Loss PAN vPU T-HOneCls

Strawberry 80.94/99.30 81.22/99.75 99.85/20.38 99.76/20.93 99.78/86.12 99.81/66.12 99.74/18.32 98.50/4.94 99.16/90.44
Cowpea 42.79/98.91 42.12/98.61 99.83/30.40 99.94/30.13 98.90/55.82 99.83/39.77 99.89/31.37 99.04/6.86 96.69/84.77
Soybean 27.96/99.85 26.86/99.98 99.69/95.27 99.51/95.13 99.43/95.07 99.56/97.55 98.93/77.48 96.86/24.22 99.62/98.64

Watermelon 6.25/99.97 6.52/99.76 93.21/94.89 94.14/93.48 93.45/93.50 91.00/94.42 96.72/87.70 98.31/38.00 89.23/97.11
Road 0.00/0.00 86.81/92.48 98.71/62.71 98.50/60.07 96.65/77.07 98.65/76.78 99.46/44.60 98.48/14.34 97.73/86.43
Water 90.99/99.95 90.34/99.96 98.67/79.54 99.67/85.96 99.58/94.50 98.73/90.42 99.54/62.69 99.76/0.72 100.00/96.79

Table 11: The Precision/Recall for the HanChuan dataset

Class Class prior-based classifiers Label noise representation learning Class prior-free classifiers
nnPU OC Loss MSE Loss GCE Loss SCE Loss TCE Loss PAN vPU T-HOneCls

Corn 99.89/97.29 99.48/99.87 99.96/98.92 99.94/98.38 99.98/97.08 99.96/97.71 99.95/94.59 100.00/4.46 99.92/99.49
Sesame 20.00/7.55 61.29/100.00 99.93/99.61 99.97/99.58 99.97/99.59 99.91/99.67 99.94/99.53 99.97/53.04 99.94/99.70

Broad-leaf soybean 98.69/74.19 96.10/81.23 99.98/69.56 99.92/77.53 99.93/77.20 99.98/60.04 99.98/41.35 99.93/2.28 99.88/86.39
Rice 0.00/0.00 99.41/100.00 99.96/97.95 99.96/98.43 99.98/98.36 99.97/97.64 99.99/97.30 100.00/21.17 99.96/99.04

Table 12: The Precision/Recall for the LongKou dataset

(a) Positive loss of the variational classifier (b) Total loss of the variational classifier (c) F1-score of the variational classifier

(d) Positive loss of T-HOneCls (e) Total loss of T-HOneCls (f) F1-score of T-HOneCls

Figure 10: The curves of rape in the HongHu dataset, showing the positive loss, total loss, and F1-score of the variational
classifier and T-HOneCls with different positive training samples in the training stage.

to reduce the weight of the unlabeled data in the gradient.
An empirical conclusion can be obtained from Fig. 12: the
higher the order of the Taylor expansion, the faster the neu-
ral network converges. However, the rapid convergence of
the neural network can lead to overfitting. In other words,
the classification results first rise and then decline with the
progress of the training, as shown in the curve of o = 5 in
Fig. 12a. A small expansion order slows down the conver-
gence of the neural network, as shown in the curve of o = 1
in Fig. 12f. Empirically, a higher Taylor expansion order
can be equipped with fewer training epochs, and a smaller
Taylor expansion order can be equipped with more training
epochs. In order to show that T-HOneCls can significantly
reduce the overfitting of the neural network for noisy labels,

we set a relatively large number of training epochs, so that
o ∈ {1, 2, 3, 4} can achieve s good F1-score. Finally, we set
o = 2.

9. More Experimental Results about KL-Teacher

The results of other classes are shown in Fig. 13. The
first thing to be analyzed is the role of EMA in the self-
calibration optimization. It can be seen from Fig. 13 shows
that the F1-score fluctuates greatly when only stochastic
gradient descent is used to optimize the Taylor variational
loss, and in this case, selecting appropriate training epochs
can seriously affect the F1-score of the model. EMA has the
function of an “F1-score filter”, which makes the F1-score
of the teacher model more stable, thus reducing the influ-



(a) Positive loss of the variational classifier (b) Total loss of the variational classifier (c) F1-score of the variational classifier

(d) Positive loss of T-HOneCls (e) Total loss of T-HOneCls (f) F1 score of T-HOneCls

Figure 11: The curves of cabbage in the HongHu dataset, showing the positive loss, total loss and F1-score of the variational
classifier and T-HOneCls with different positive training samples in the training stage.

(a) Cotton in HongHu (b) Rape in HongHu (c) Sesame in LongKou

(d) Broad-leaf soybean in LongKou (e) Cowpea in HanChuan (f) Watermelon in HanChuan

Figure 12: The F1-score curves for the different order of the Taylor series in T-HOneCls.

ence of inappropriate training epochs, as shown in Fig. 13.

The exponential moving average allows the teacher
model to lag behind the student model, and due to the mem-
orization ability of the neural network, the F1-score of the
lagged neural network is better than that of the student net-
work at the later stage of training. The use of consistency
loss can promote the output of the student model to approx-
imate the teacher model, so as to alleviate the overfitting
problem. If L2 is regarded as the consistency loss, it is
equivalent to Mean-Teacher [34] being used. However, ac-
cording to the results in Table 6, L2 cannot effectively al-
leviate the overfitting of the student model. From Table 6,
better F1-score can be obtained by using Lkl as the consis-

tency loss. It can be seen from Fig. 13 that the curve of
the F1-score using Lkl is at the top, which indicates that
KL-Teacher alleviates the overfitting phenomenon to some
extent through the memorization ability of the neural net-
work. The analysis of the β in KL-Teacher is presented in
the Table 13, and the proposed method is robust to β.

β 0 0.2 0.4 0.5 0.6 0.8 1.0

F1 97.51(0.68) 97.95(0.38) 98.20(0.31) 98.15(0.35) 98.40(0.31) 98.55(0.26) 98.65(0.23)

Table 13: Analysis of the β in the cotton of HongHu dataset.



(a) Cotton in HongHu (o=2) (b) Broad-leaf soybean in LongKou (o=2) (c) Cowpea in HanChuan (o=2)

(d) Cotton in HongHu (o=5) (e) Broad-leaf soybean in LongKou (o=5) (f) Cowpea in HanChuan (o=5)

Figure 13: The F1-score curves of the different components of KL-Teacher in T-HOneCls.

10. More Experimental Results about Class Prior-
based Method with Oracle Class Prior

The class prior-based method is evaluated with estimated
class prior (π̂p) and oracle class prior (πp). Due to the se-
vere inter-class similarity and intra-class variation, the πp

is hard to be estimated accurately in HSI. The πp and π̂p

are shown in the Table 14. The results of class prior-based
method are very poor without accurate πp, the proposed
method achieves competitive results compared to the class
prior-based method with an oracle πp (Table 14).

Class Rape Tube mustard Cowpea Soybean Watermelon

Class prior πp 0.1317 0.0367 0.0617 0.0279 0.0123
π̂p 0.2231 0.3109 0.2547 0.1509 0.3109

F1-scores
OC Loss(πp) 98.73(0.05) 95.97(0.93) 90.43(0.48) 98.04(0.97) 91.21(1.92)
OC Loss(π̂p) 81.81(1.23) 23.57(0.22) 58.97(3.56) 42.34(1.06) 12.23(0.46)

T-HOneCls 97.81(0.16) 97.38(0.35) 90.31(1.13) 99.13(0.28) 92.99(0.90)

Table 14: Comparison of the πp and the π̂p. Comparison of
the F1-scores of class prior-based method with πp and π̂p.


