
A.Appendix

A.1 Algorithm

Algorithm 1 Vanilla Trainer
Require:

Learning rate � > 0,
momentum coefficient 0 < µ < 1
loss function L

Initialize:

✓, v  0

1: while ✓ not converged do

2: g  r✓L(x, y,�;✓)
3: v  g + µv
4: ✓  ✓ � �v
5: end while

Algorithm 2 Distillation-Oriented Trainer
Require:

Learning rate � > 0,
momentum coefficient 0 < µ < 1,
momentum difference 0 < � < 1� µ,
loss functions LCE, LKD and
corresponding weights ↵, 1� ↵.

Initialize: ✓, vce  0, vkd  0

1: while ✓ not converged do

2: gce  ↵r✓LCE(x, y;✓)
3: gkd  (1� ↵)r✓LKD(x,�;✓)
4: vce  gce + (µ��)vce
5: vkd  gkd + (µ+�)vkd
6: ✓  ✓ � �(vce + vkd)
7: end while

A.2 A toy experiment for better understanding

We conduct a series of toy experiments to intuitively il-
lustrate the optimization behaviors of DOT. Concretely, we
initialize a 2-d (trainable) tensor as the logits for a binary
classification task. Then, we employ a loss function com-
posed of two parts: (1) a cross-entropy loss (where the tar-
get class is 1), and (2) a distillation loss (where the teacher’s
prediction is a constant 0.7). We use a vanilla SGD and our
proposed DOT to respectively optimize the loss function,
and the prediction of the 2-d tensor is shown in Figure 8. It
suggests that applying DOT makes the 2-d tensor more sim-
ilar to the teacher’s prediction (0.7 is the ideal output of a
student if distillation loss is well optimized). What’s more,
DOT could search a wide range of the loss landscape (great
fluctuations in Figure 8), which helps the model to get rid of
sharp local minima. We hope this toy experiment could pro-
vide insights for an intuitive understanding of the working
mechanism of DOT.

Figure 8: Toy experiments for analyzing optimization behaviors
of SGD and DOT. It conveys that DOT could help the student net-
work converge to minima satisfying the distillation loss well.

A.3 More pairs on CIFAR-100

We conduct more experiments on CIFAR-100 following
CRD’s protocol, and results are reported in Table 6 and 7
which verifies the universality of DOT.

teacher student KD DOT
WRN-40-2 WRN-16-2 74.92 75.85
WRN-40-2 WRN-40-1 73.54 74.06
ResNet56 ResNet20 70.66 71.07

ResNet110 ResNet20 70.67 71.22
ResNet110 ResNet32 73.08 73.72

ResNet32⇥4 ResNet8⇥4 73.33 75.12
VGG13 VGG8 72.98 73.77
Table 6: Pairs of the same architecture.

teacher student KD DOT
VGG13 MobileNetV2 67.37 68.21

ResNet50 MobileNetV2 67.35 68.36
ResNet50 VGG8 73.81 74.38

ResNet32⇥4 ShuffleNetV1 74.07 74.58
ResNet32⇥4 ShuffleNetV2 74.45 75.55
WRN-40-2 ShuffleNetV1 74.83 75.92

Table 7: Pairs of the different architectures.

A.4 Does longer training time help for better con-

vergence?

In Section 3 of the manuscript, we visualize and analyze
the loss curves and reveal a trade-off issue caused by intro-
ducing distillation loss. We further conduct the experiment



for longer training epochs, i.e., applying a smaller learning
rate for extra epochs to study whether the trade-off could
be alleviated. Concretely, we further train the network with
both task and distillation losses for 60 epochs and decay
the learning rate every 30 epochs. Results in Table 8 indi-
cate that longer training still cannot significantly decrease
the training task loss. The task loss after longer training is
still around 0.38, while the task loss of the vanilla baseline
is 0.2379. It indicates that the trade-off issue still remains,
further supporting the existence of optimization conflict be-
tween task loss and distillation loss.

epoch baseline 240 270 300
validation top-1 72.50 73.33 73.51 73.63
training task loss 0.2379 0.3844 0.3801 0.3818

Table 8: Results of training students with both task and distillation
losses for longer epochs.

A.5 Why does DOT perform better on challenging

datasets?

As shown in Table 3, DOT works better on challeng-
ing datasets, e.g., DOT achieves +1⇠2%, 3⇠6% and 1⇠2%
performance gain on CIFAR-100, Tiny-ImageNet and Ima-
geNet, respectively. We believe the reason is that the teacher
could transfer more useful and valuable knowledge on the
challenging tasks, and dominating the optimization with
distillation loss could better leverage the knowledge, which
means the upper bound of the performance gain for DOT is
higher.

A.6 About tuning �

The only hyper-parameter introduced by our DOT is �.
We notice that the values of � need adjustments on dif-
ferent datasets. However, the improvement is satisfactory
without tuning �, i.e., � is not a sensitive hyper-parameter.
Concretely, the value of � for KD+DOT on CIFAR100 is
set as 0.075, the for CRD+DOT is set as 0.05, as well as
for DKD+DOT. The values of � for all methods on Tiny-
ImageNet are set as 0.075. As for ImageNet, knowledge
from teachers is more valuable and reliable, so we set � as
0.09 for both KD+DOT and DKD+DOT.

A.7 Implementation of DOT

It is worth mentioning that the implementation of DOT
for feature-based methods is not the same as for logit-
based methods (e.g.KD and DKD). The reason is as follows:
The extra distillation loss of logit-based methods is a KL-
Divergence applied on the student’s logits and the teacher’s
logits, so there are no other extra parameters to optimize and
all the parameters of the student network are involved. On
the contrary, feature-based methods need extra modules and

parameters as connectors between students’ features and
teachers’ features. And the final fully-connected layer (the
classifier) is not involved when computing the gradients of
feature-distillation loss. In other words, different losses in-
volve different network parameters in the feature-based dis-
tillation methods, so directly applying different momentums
for the different losses will lead to a “gradient inconsis-
tency” problem. To solve this problem, DOT only applies
different momentums on the parameters involved by both
task and distillation losses. For parameters involved by only
one loss (e.g., the final fully-connected layer), momentums
are the same as the baseline.


