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1. Detailed algorithms of the proposed methods

The details of our proposed example-based ConvergeSmooth, batch-based ConvergeSmooth, and weight centralization are
shown in Algorithms 1, 2, and 3 respectively. Other attack initialization methods can be easily combined with ConvergeS-
mooth by replacing line 15 in Algorithm 1.

2. Additional Experiments

Graphical analysis of various models and datasets. Fig. 1 of the main text shows the training process of adversarially
trained models (ResNet18) using previous FAT methods on the CIFAR10 dataset. We then provide the graphical analysis of
the CIFAR10 with WideResnet, as well as the CIFAR100 with Resnet18 in this supplementary material. Results are given in
Fig. 1. These experimental results also verify our conclusions, e.g. the mentioned FAT methods face catastrophic overfitting
under the perturbation budget 16/255. See Section 3.2 of the main text for a detailed analysis.

We discover that the default FGSM-RS overfits within 10 epochs at £ = 16/255. Removing constraint o + § € [—&, ]
improves the diversity of perturbations and brings a significant improvement. The training processes with or without using
this constraint are shown in Fig. 2.

Various Networks. The main text studies the adversarial robustness of FAT methods on ResNet18 [6]. Here, we adopt
WideResNet34 with a width factor of 10 [12] as the backbone. WideResNet34-10 is more complex than ResNet18 and takes
much more time to train. The experimental results on the CIFAR-10 and CIFAR-100 datasets are given in Tabs. 1 and 2,
respectively. We note that our proposed ConvergeSmooth prevents the wider architectures from the catastrophic overfitting
problem. It shows higher adversarial robustness than all other FAT methods and comparable performance to PGD-AT with
less time consumption.

Experiments on ImageNet We also conduct experiments on ImageNet [3]. The initial learning rate is set to 0.1, ResNet50
[6] is selected as the backbone, and FGSM-BP [11] is adopted as the initialization method. Then, we optimize models with
a total training epoch of 90 and decay the learning rate at the 30y, and 60y, epoch with a factor of 0.1. For hyper-parameters,
Ymaz = 0.045, wy =0 and ws = 1. The experimental results are given in Tab. 3. We observe that a stable FAT training with &
= 16/255 on ImageNet struggles to converge. Overall, our proposed method can stabilize the FAT process on various datasets.

Analysis of the learning rate and early stopping. [8] trains the model with the cyclic learning rate (CLR) and early
stopping (ES). However, the setting of CLR is not always available for training FAT methods under large perturbation budgets.
For instance, the retrained FGSM-RS model achieves 83.2 and 43.7 on clean and PGD50 metrics at 8/255 with the CLR and
15 epochs. Under the same settings, the adversarial robustness of FGSM-RS drops to 0 at 16/255.

Moreover, ES requires evaluating the model after each training epoch to determine whether early stopping should be
utilized, which causes excessive time consumption. Premature early stopping seriously damaged the performance of models.
For example, the default FGSM-RS faces catastrophic overfitting at the 8th training epoch under the setting of the multistep
learning rate (30 epochs decay at 20 and 25) and £ = 16/255. The final evaluation result is 60.1 and 15.2 on clean and AA
accuracy. Under the same settings, our B-RS realizes 66.8 and 18.8 on clean and AA accuracy.
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Algorithm 1: Example-based ConvergeSmooth-RS.

Input: The epoch N, the dataset D, the cross-entropy loss £, the model f(+; #), the hyper-parameters w1, w2, Ymaz
and Y,n, the perturbation budget .
Output: The adversarially trained model f(-; ).

1 for tin N do

2 | Logm=0;
s | ocsm=o;
4 Iter = 0;
5 for (z¢, y) in D do
6 Eom‘ =£(f(1'0;0),y);
7 »Cg%m += »Com';
8 Iter +=1;
9 Lcs =05
10 if ¢ >2 then
11 if |Lopri — ug—1] > 7 then
12 | Los =w1 Lago - g0 (Lagw — Uj_1) + w2 - Lori - SN (Lopi — Us—1);
13 end
14 end
15 60 =U(_£a€);
16 9ec = Sgn(vwo-l‘tso [:(f(ﬂfo + 60; 9)’ y)),
17 0 =clipe [do + & - gcl;
18 & =clipg.5 [ + 6 - 0.5];
19 Lodv =£(f(x() +6;9),y);
20 L34 4= Lodys
21 £adv += Ecs
22 0=0-VoLlagy;
23 end
24 ug—q = L4 [ Iter;
35| wp_y = L3/ Tter;
26 if t >2 then
27 di—1 =up_1 - up_2;
28 Tt = min(max(dt—h mein)7 ’Ymcm);
29 end
30 end

For fair comparisons, we follow FGSM-MERP to train all methods with a multistep learning rate (MLR) and 110 epochs
(decay at 100 and 105) without considering early stopping (ES). Hyperparameters are tuned for training previous methods
on a large perturbation budget.

Different hyperparameter settings. Parameter selection suggestion: set initial 7,4, = 0.03, increase 7,4, to improve
the attack performance if the FAT process is stable, otherwise increase the value of w; to make the FAT process stable. Other
hyperparameters choose default values.

There are 4 hyperparameters in ConvergeSmooth, V,uins Ymaz, w1 and ws. w; and wo are usually set to 0 and 1 respec-
tively. wy is gradually increased from 0.3 with a stride of 0.2 once the training process faces catastrophic overfitting (w; =0
and wo = 1 by default). By sacrificing some robustness, ¥, and v, can be replaced by . Hence, we mainly adjust wy
and . +y is used to prevent a small amount of data from overfitting and is closely related to the loss difference of adjacent
epochs. Models exhibit different loss variances on various datasets. In Tab. 4, we observe that too small v will affect perfor-
mance and too large v cannot prevent overfitting. Meanwhile, the classification accuracy of benign samples and adversarial
samples in stable training is not sensitive to the hyperparameter settings. The specific details of hyperparameter settings in
this work are shown in Tab. 5.

Analysis of loss types. In the main text of this work, the L; loss and dynamic convergence stride are utilized to control
the history difference and convergence speed, respectively. Next, we replace the L; loss and dynamic convergence stride



Algorithm 2: Batch-based ConvergeSmooth-RS.

Input: The epoch N, the dataset D, the cross-entropy loss £, the model f(+; #), the hyper-parameters w1, w2, Ymaz
and Y,n, the perturbation budget .
Output: The adversarially trained model f(-; ).

1 for tin N do

2 | Lyum=0;
3| Lgm=o;
4 Iter = 0;
5 /* For a batch of data */
6 for (B, T) in D do
7 Lori = L(f(B;8),T); /* The average loss of batch data */
8 Ciqum += ﬁom’;
9 Iter += 1;
10 ﬁcs = 0;
11 if ¢ >2 then
12 if |Lori — ug—1| > 7 then
13 ‘ ECS = w1y - Eadv : Sgn(ﬁadv - u;71) + wa - Eori . Sgn(ﬁari - utfl);
14 end
15 end
16 0o = U(—¢,&); /* The initialization perturbations of batch data */
. g = $20(V 515, L(F(B +80:0), T));
18 0 =clipe [do + & - gcls
19 0= Clip(),g, [(5 + B - 05],
20 Lodv = L(f(B+ 6;0),T); /* The average loss of batch data */
21 L3 4= Logys
2 Laaw +=Lcs
23 0=0-VoLloiv;
24 end
25 ug—1 = L5 [ Iter;
26 wy_q = L34 [ Tter;
27 if t >2 then
28 di—1 =Us—1 - ug—2;
29 Yt = min(max(dt—h ’Ymin)y 'Ymax);
30 end
31 end

with the Ls loss and exponential moving average (EMA) respectively. Meanwhile, EMA is also applied to update the model
weights 6;. Tab. 6 provides detailed results. It can be seen that the model is not sensitive to the choice of loss functions.

Compare with the AT method. 1) Our methods are proposed to solve the catastrophic overfitting problem in FAT process.
It has been proved in the main text that AT methods are computationally expensive but stable, so it is not necessary to apply
additional constraints to AT methods since there is no catastrophic overfitting problem. Thus, we apply the AT method such
as TRADES [13] to FAT. 2) TRADES and NuAT share a similar implementation in FAT, i.e. TRADES and NuAT only have
different initialization perturbations and loss functions for gradient backpropagation. Mainstream initialization perturbations
follow uniform distribution (UD) or random distribution (RD). 1/A in TRADES is set to 10 or 5. In Tab. 7, the results on
CIFAR-100 and the perturbation budget 12/255 are given. ResNet-18 is adopted as the backbone. Experiments show that the
AT method may not be effective in the FAT task.

Various perturbation budgets. In addition to the experiments for the perturbation budgets 10/255, 12/255, and 16/255,
similar experiments are performed for £= 8/255. The results in Tab. 8 prove that our approach does not reduce classification
performance (in fact it improves slightly).

The difference. SAF (or MESA) [4] separately flattens the logit of the corresponding sample pair between epochs.
Besides inter-epoch flattening, our ConvergeSmooth further synchronizes loss predictions of all samples within the same



Algorithm 3: Weight Centralization.

Input: The epoch N, the training dataset D, the cross-entropy loss £, the model f(-; 6)), the hyper-parameters ws,
the perturbation budget &, the flag eval (‘False’ by default).
Output: The adversarially trained model f(-;6x).

1 fortin N do

2 Iter = 0;
3 SumAcc = 0;
4 /* For a batch of data */
5 for (B, T) in D do
6 Lcs=0;
7 if t >2 then
8 | Los=ws (100 — £l
9 end
10 00 = U(=¢, €); /* The initialization perturbations of batch data */
1 gec = Sgn(vB+50 ‘C(f(B + do; 9)7 T))’
12 § = clipe [60 + € - gel;
13 6 =clipg.5 [6 + B -0.5];
14 Ladw =L(f(B +06;0),T); /* The average loss of batch data */
15 Ladv += Lcs;
16 at = gt - vﬁtﬁadv;
17 end
18 if eval then
19 /* Dy is a randomly selected subset from the validation dataset */
20 if PGD_Acc(D, 0,) > S22 then
21 0* +=0y;
22 Sum_Acc += PGD_Acc(D1, 0:);
23 Iter +=1;
24 end
25 else
26 0* +=0,;
27 Iter +=1;
28 end
29 end

epoch, solving catastrophic overfitting. 2) SAF causes the memory overload issue in large datasets. Ours does not. 3) MEA
used in MESA is verified to be ineffective in the FAT task, please see Table 6 of the supplement. (4) [2] enforces the model
loss increase with the perturbation size. Our models are trained under a fixed perturbation size.

Additional experiments. Tabs. 9-11 provide a more comprehensive assessment of the results under the settings of the
main text, covering the average evaluation results of the best model across the three runs (mbesf), the best results (best) and
the average evaluation of the final model from the three runs (mfinal).
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Figure 1. Graphical analysis of various models and datasets.
(a) ResNet18; trained with FGSM-RS (b) ResNet18, trained with FGSM-RS (c) ResNet18; trained with FGSM-RS
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Figure 2. Ablation studies for the constraint o + 6 € [—£, €] in FGSM-RS. -E means removing the constraint 6o + § € [—¢&, &].
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Methods Cleant FGSMT PGD-107 PGD-207 PGD-507 C&WT APGDT AA | Time (hours))

best 70.76  52.82 44.08 37.45 3559 31.13  34.02 2641
PGD-AT[8] final 70.76  52.82 44.08 37.45 3559 31.13  34.02 2641 26.1

best 53.94 32.32 27.60 22.24 2096  21.17 20.27 16.28
FGSM-RS [10] final 78.96  74.25 2.64 0.71 0.16 0.06 0.37  0.00 449

. best 5558 3410 2722 2149 1992 1756 1897 1345
GradAlign {11~ 42 1 7167 7816 123 0.17 001 012 000 0.0 8.1

ZeroGrad [5] best 7425 46.74 35.62 25.05 21.15 2361 18.55 13.79 4.49
final 85.72 59.41 23.92 13.13 7.96 13.18 398  3.08 ’

best 7425 46.74 35.62 25.05 21.15 23.61 1855 13.19
NuAT [9] final 84.82  69.98 5.98 1.96 0.69 1.67 0.12  0.01 7:66

best 79.10 47.66 34.70 23.89 2036 23.14 18.67 14.86
ATASIT] final 83.32  58.26 26.07 16.28 13.18 17.17 10.19 8.58 325

best 65.56 38.68 32.51 26.15 25.0 18.2 2429 1543
FGSM-MEP [11] final 90.56  83.25 11.52 5.95 2.57 1.98 .36 0.01 615

best 69.94 51.17 4334 3675 3479 29.69 32.83 2427
Ours-B-MEP 0 1 7122 5132 4270 3570 3365 2933 3152 2351 6.72

Table 1. Quantitative results of the adversarial training methods (£ = 16/255) on CIFAR-10 with WideResNet as the backbone.

Methods CleanT FGSMT PGD-107 PGD-20T PGD-501 C&W{ APGD{ AA 1 Time (hours)]

best 46.06 25.98 22.76 18.32 17.60 1524 17.29 1297
PGD-AT[8] final 49.83 27.01 21.81 17.22 1655 1476 16.27 1244 26.1

best 25.89 15.59 13.34 11.26 10.98 9.18 10.8  7.82
FGSM-RS [10] final 41.17  33.85 0.00 0.00 0.00 0.00 0.00  0.00 449

. best 3593 19.62 1530 1157 1048 896 1021 7.3
GradAlign {11~ 4 1 4860 4624  0.00 0.00 000 000 000 0.00 8.79

best 5131 2618 1846 1283  11.09 1241 10.06 7.59
ZeroGrad [S1 6, 1 6315 4198 1.46 0.55 015 024 000 0.0 449

best 20.48 13.88 12.37 10.93 10.73 856 1031 7.30
NuAT [9] final 69.99  33.54 5.90 3.34 2.11 3.17 1.14  0.69 7:66

best 71.55 40.26 24.31 16.44 9.80 1091 1.79 0.03
ATASIT] final 7195 41.21 21.02 14.03 7.71 8.52 0.72  0.00 325

best 20.69 12.64 11.14 9.68 9.52 7.67 946 6.73
FGSM-MEP [11] final 7212  58.57 5.30 2.68 1.22 0.54 1.03  0.00 0.15

best 4864 26.74 2227 1770 1695 1465 1650 12.05
Ours-B-MEP o 1 4845 2672 2226 1779 1690 1471 1643 11.86 6.72

Table 2. Quantitative results of the adversarial training methods (£ = 16/255) on CIFAR-100 with WideResNet as the backbone.

Methods  Clean] FGSM{] PGD-107 PGD-207 PGD-501 C&W{ APGD{ AA | Time (hours)]

FGSM-RS [10] 4.83 2.48 2.48 1.67 1.24 0.82 0.56 0.19 56.2
FGSM-BP[11] 13.04 8.68 1.70 0.59 0.26 0.47 022  0.08 75.7
Ours-B-BP  26.18 14.53 8.10 4.01 1.96 2.57 1.49  0.59 82.5

Table 3. Quantitative results of the adversarial training methods (¢ = 16/255) on ImageNet with ResNet50 as the backbone. The digit
denotes the optimal adversarial robustness of the model against the PGD10 attack.
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Dataset v Cleant FGSMT PGD-107 PGD-201 PGD-507 C&W1 APGDT AA | Stability
003 72.63 5440 4523 4285  42.14 3681 41.62 3326 A

CIFARIO 0.045 7296 54.88 4554 4289  42.19 3752 4050 32.86  **
006 87.92 8221 2074 1537 1162 936 725 039 -
003 48.13 32.13 2425 2267 2221 19.04 2129 1528 **x*

CIFARI00 0.045 48.19 31.56 2449 2268 2229 19.01 2126 1554 xxx
006 49.86 3243 2479 2312 2278 1952 21.10 1551  x«

Table 4. Quantitative results of the proposed method on various v with ResNet18 as the backbone and the perturbation budget 12/255.
CIFAR10 and CIFAR100 are selected as datasets. ‘Stability’ represents the number of times the model is stable in three training repetitions.
w1 and wa are set to 0 and 1, respectively.

FAT methods Datasets Ymaz W1 W2 W3
Ours-E-MEP CIFAR10,100 0.06 0 1 -
CIFARI0 006 0 15 -
OursE-RS C[aR100 006 0 05 -
CIFARI10 003 0 1
CIFARIOO 0.06 0 1
Tiny-ImageNet 0.03 05 1 -
1
1
1

Ours-B-MEP

ImageNet  0.045 0
CIFARI10 003 0
CIFAR100 0.06 O
Ours-W-RS CIFAR10,100 - - - 01

Ours-B-RS

Table 5. Specific details of hyperparameter settings in this paper.

Methods Ours-B-MEP L;+EMA Ly (w2=0.1) WEMA
Decay - 0.1 0.5 0.9 - 0.1 0.5 0.9
Wa 1.0 1.0 1.0 1.0 0.1 1.0 1.0 1.0

Clean/AA 49.9/15.5 32.9/10.8 44.8/15.2 47.0/13.6 48.3/15.3 30.9/10.4 32.9/10.7 37.7/14.3

Table 6. Ablation studies for various loss types and strategies with ResNet18 as the backbone and the perturbation budget 12/255. CI-
FAR100 is selected as the dataset. ‘Ours’ means training with L loss and w2 = 1. “‘WEMA’ denotes that we use EMA to update the
current model weights.‘Decay’ is set to 0.1, 0.5, or 0.9.

Methods  Distribution 1/A Cleanf FGSM{ PGD-107 PGD-207 PGD-501 C&W?T APGD{ AA |
50 6351 2444 1272 9.92 917 872 867 730

TRADES ub 10.0 62.88 26.54 15.62 12.73 11.97 1072  11.03 9.01
RD 50 4824 18.64 10.26 8.58 8.12 7.64 7.63  6.15

10.0 44.49 20.68 12.60 11.12 10.73 930 1023 7.71

Ours-B-MEP RD - 4986 3243 24.79 23.12 22.78 1952 21.10 15.51

Table 7. Comparitive experiments between the AT method and the proposed method on ResNet18 as the backbone and the perturbation
budget 12/255. CIFAR100 is selected as the dataset.

[13] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan. Theoretically principled trade-off
between robustness and accuracy. In International conference on machine learning, pages 7472-7482. PMLR, 2019.



¢ FAT methods Cleant PGD-101T PGD-501 AA
best 73.81 4231 41.26 37.69

FGSM-RS - o0l 8382 009 002 -
best 8218 5194 5050 44.13

8755 Ours-B-RS 4 01 8225 5180 5042 -
rasvvep Pe 8172 5522 5419 49.00

final 82.05  55.10 54.08 -

best 8156 55.92  54.98 49.34
Ours-B-MEP o 1 8167 5553 5454 -

Table 8. Quantitative results of FAT methods on classical £ with ResNet18 as the backbone and CIFAR-10 as the dataset. Models are
trained and evaluated under the same £. The number in bold indicates the best.

Methods Cleant FGSM?T PGD-107 PGD-201 PGD-507 C&WT APGD{ AA 1 Time (min)J
best 6532 4643 4083 3530  34.09 30.86 3323 26.39
PGD-AT [8]  mbest 6530 4631 4073 3508 3392 30.84 33.08 26.29 370
mfinal 6529 4628 4079 3506  33.77 3031 33.01 25.92

best 46.99 36.33 25.96 21.88 21.16  19.73  20.73 16.59

FGSM-RS [10] mbest 50.12  38.28 26.13 21.55 2043 1896 1940 14.84 67
mfinal 76.31  50.67 0.00 0.00 0.00 0.00 0.00  0.00
best 59.03 39.31 33.54 27.68 26.14 2146 25.18 17.67

GradAlign [1]  mbest 58.17 39.87 33.12 26.81 2499 2263 2398 17.02 135
mfinal 70.86  69.51 0.00 0.00 0.00 0.00 0.00  0.00
best 74.10 43.88 33.09 2243 18.81 21.55 17.18 1274

ZeroGrad [5]  mbest 74.16  43.96 32.67 21.98 18.37  20.76 16.44 12.07 67
mfinal 75.60  44.89 31.77 20.71 16.76  20.09 1446 10.87
best 70.82 45.25 37.03 28.12 2536 24.12 2477 17.68

Ours-W-RS mbest 70.66  45.51 36.50 27.51 2475 2397 2338 17.14 75
mfinal 70.71  45.56 36.01 26.92 25.55 2394 22,65 16.71
best 62.53 43.81 37.56 31.59 29.68 2448 2811 1797

Ours-E-RS mbest  62.38  42.07 36.78 30.80 2890 23.64 2771 17.55 75
mfinal 77.20 47.74 35.76 27.14 2224  16.16 1845 6.76
best 65.28 46.12 38.11 30.48 28.37  26.72 2698 19.82

Ours-B-RS mbest 6542  45.94 37.54 30.01 27.85 2628 26.52 1943 75
mfinal 67.10 47.38 37.26 29.44 27.06  26.19 25.74 18.77

best 7425 45.01 35.45 26.05 23778  24.17 2248 18.53
NuAT [9] mbest 74.62  44.92 35.22 25.93 23.67 2407 2237 1843 101
mfinal 7529  45.31 34.85 25.58 2344  23.62 22.10 18.06
ATAS* [7] - 64.11 - 31.39 - 28.15 - - 21.09 -

best 5529 37.14 3242 27.40 26.61 2239  26.05 19.01
FGSM-MEP [11] mbest 53.32 36.24 31.85 27.28 26.56  22.10 26.08 18.98 92

mfinal 86.50  79.23 10.09 0.06 0.04 0.02 242 0.06

best 69.23 46.54 41.21 34.66 33.13 23.69 3147 1897
Ours-E-MEP  mbest 69.84 47.18 40.90 34.17 3272 22,69 31.12 17.74 101

mfinal 71.00 47.71 40.36 33.73 3258  20.82 30.54 15.21

best 63.30 45.25 40.31 34.50 33.39 2832 3257 24.39
Ours-B-MEP  mbest 63.84 45.48 40.13 34.21 3295 28.19 32.04 23.68 101

mfinal 64.69  46.07 39.95 33.84 3239 27779 3142 2255

Table 9. Quantitative results of the adversarial training methods (£ = 16/255) on CIFAR-10 with ResNet18 as the backbone. ‘ATAS™” is the
result of ATAS in [7], which is superior to our reproduction. We train each method three times. mbest (or mfinal) represents the evaluation
average between the best (or final) models of three training processes. best is the best evaluation result for each FAT method. Weight
centralization and regularization in MEP do not work together.



Methods Cleant FGSM{ PGD-101 PGD-207 PGD-507 C&W1{ APGD] AAT Time (min)J
best 40.88 2479 2154  18.06  17.54 1508 17.10 12.80

PGD-AT  mbest 40.57 2472 2146 1794 1738 1498 17.02 12.63 370
mfinal 41.03 24.83 2092 1729 1672 1493 1633 1231

best 31.25 15.76 13.06 10.51 10.03 8.78 9.78  7.28

FGSM-RS [10] mbest 30.12 15.24 12.69 10.25 9.79 8.45 9.57 690 67
mfinal 52.36 41.04 0.00 0.00 0.00 0.00  0.00 0.00
best 3129 16.07 13.09 10.62 9.98 8.46 976 6.97

GradAlign [1] mbest 3191 15.71 12.56 10.28 9.71 8.22 947 6.61 135
mfinal 41.45 43.36 0.00 0.00 0.00 0.00  0.00 0.00
best 46.67 23.48 17.66 13.03 11.99 11.59 11.03 7.96

ZeroGrad [5] mbest 47.31 23.58 17.60 12.85 11.87 11.62 11.01 794 67
mfinal 49.46 2531 16.32 11.56 1036 10.75 941 7.21
best 45.01 2497 18.82 14.66 13.64 1220 1296 9.19

Ours-W-RS  mbest 44.68 25.19 18.75 14.50 13.53  12.18 13.80 9.00 76
mfinal 41.97  26.30 19.09 14.77 13.72  12.82 13.36 9.67
best 40.28 2245 18.89 15.25 14.57 12.24  14.04 9.58

Ours-E-RS mbest 41.09 22.33 18.78 15.19 1443 12.00 1391 9.50 76
mfinal 44.23  22.16 17.52 13.90 13.04 10.83 12.60 8.35
best  40.70 24.72 19.61 15.76 1475 13.03 14.29 10.25

Ours-B-RS mbest 41.47 2598 19.44 15.36 1434 1291 1371 990 76
mfinal 41.97 26.30 19.09 14.77 13.72  12.82 13.36 9.67

best 34.63 2234 17.06 14.55 13.91 11.73 1259 8.44

NuAT [9] mbest 31.42  20.39 16.15 13.87 13.29 1112 1225 8.32 101
mfinal 43.73  27.11 14.54 10.40 8.83 9.32 7.30 497
best 5536  30.95 15.33 10.47 8.62 11.2 6.34 5.10

ATAS [7] mbest 55.63  30.35 15.31 10.28 8.49 1097 630 5.05 70
mfinal 57.89  30.37 14.03 9.29 1.57 1021 533 434

best 2129 13.32 11.46 9.97 9.76 7.32 9.58 6.29

FGSM-MEP [11] mbest 21.39 13.00 11.37 9.93 9.76 7.28 9.58 6.36 92
mfinal 67.14 59.33 1.43 0.64 0.32 0.39 0.17  0.01
best 44.09 24.73 20.85 17.31 16.59 13.63 16.21 11.19

Ours-E-MEP  mbest 44.00 2446  20.59 17.11 16.59  13.37 16.05 10.97 102
mfinal 46.03  24.45 20.08 16.62 1583 1298 1541 10.85
best 41.86 24.71 20.97 17.34 16.60 14.08 16.32 11.49

Ours-B-MEP  mbest 41.86 24.86  20.84 17.30 16.59 1396 16.25 11.38 102
mfinal 43.10 24.33 20.60 17.13 16.50 13.68 16.16 11.30

Table 10. Quantitative results of the adversarial training methods (£ = 16/255) with ResNet18 as the backbone on CIFAR-100. We train
each method three times. mbest (or mfinal) represents the evaluation average of the best (or final) model in three training processes. best is
the best evaluation result for each FAT method.



Methods Cleant FGSM? PGD-107 PGD-201 PGD-501 C&W{ APGD-CE! AAT Time (hour)
best 3247 1637 1327 1060 1023  8.05 1001 6.41
PGD mbest 32.52 1647 1340 1063 1024  7.95 10.00 641 67.2
mfinal 3232 1626 1335  10.25 983  7.56 969 621

best 31.25 13.66 10.24 7.01 6.33 5.25 6.00 3.76
FGSM-RS [10] mbest 27.48 12.46 9.59 6.97 6.47 4.99 6.19 3.63 10.5

mfinal  0.00 2.39 0.00 0.00 0.00 0.00 0.00 0.00

best 29.15 13.74 10.60 7.79 7.13 5.89 6.71 4.08
GradAlign [1] mbest 28.65 13.80 10.40 7.78 7.08 5.75 6.59 3.90 20.9

mfinal 15.66  8.72 5.75 4.55 4.38 3.05 4.25 224

best 35.13 12.21 8.42 543 4.77 3.88 4.34 2.36

ZeroGrad [5] mbest 34.66 12.26 8.22 5.29 4.82 3.71 4.23 2.21 10.5
mfinal 37.67  7.62 3.18 1.70 1.38 1.07 1.05 0.51
best 3455 15.38 12.18 8.96 8.43 6.38 8.19 4.33

NuAT [9] mbest 35.24  15.52 12.07 8.81 8.13 6.29 7.68 4.27 24.6

mfinal 41.75 16.51 10.49 7.01 6.37 4.93 5.35 2.94
best 2144 10.39 8.62 7.11 6.91 5.00 6.77 3.80

FGSM-BP [11] mbest 20.02 10.18 8.38 6.98 6.77 4.56 6.57 3.62 14.3
mfinal 49.56  38.54 0.00 0.00 0.00 0.00 0.00 0.00
best 3470 16.55 13.43 10.49 10.07 7.82 9.76 6.28

B-BP (Ours) mbest 33.51 16.32 12.92 9.72 9.23 7.26 9.32 5.95 15.4
mfinal 33.28  15.81 12.47 8.69 8.25 6.61 8.18 5.67

Table 11. Quantitative results of various methods (£ = 16/255) with PreActResNet18 as the backbone on Tiny ImageNet. best is the best
evaluation result among the three training sessions for each FAT method.



