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In this supplementary, we will expand more details that

are not included in the main text due to the page limitation.

S1. Algorithm Details

We introduce 3 algorithms in the main paper. In this sec-

tion, we supplement the algorithm details of the confidence

map back-propagation, margin fusion approach and multi-

frame fusion strategy in the main paper.

Confidence map back-propagation. Algorithm S1 sum-

maries the strategy of confidence map back-propagation in

the main paper Section 4.1. The parameters in Algorithm S1

are set to k = 5, d = 10, and δC = 0.5.

Algorithm S1 Back-propagation for aggregated confidence

map

Input: Y: optical flow; C: confidence map; δC : threshold

for confidence map; d: sampling interval; k: index of

the first frame;

Output: M: updated mask containing aggregated confi-

dence map;

1: set mpre = 1(Ĉk+(n−1)d − δC) ∈ C, put mpre into M;

2: for i = n− 1; i >= 0; i−− do

3: the optical flow field Ywarp = Yk+id ∈ Y;

4: using Ywarp to warpmpre to m̂pre = Ywarp(mpre);
5: the binarized confidence map mnew = 1(Ck+id −
δC), where Mk+id ∈ C;

6: the final mask field M̂k+id = m̂pre &mnew

7: put M̂k+id into M;

8: mpre = M̂k+id

9: end for

Margin fusion. The complete pipeline of the margin fusion

approach is shown in Fig. S1. At first, we coarsely align the

reference frame Is and the target frame It. We then crop

Iwarp and It to Isc and Itc , and re-align them by the optical

flow outpainting. Per Algorithm S2, we further calculate the

mask MIt which indicates the chosen regions of It. The

final result Iresult is obtained by combining It, MIt , and

Iwarp
c . The parameters in the Algorithm S2 are set to δD =
0.2, ηt = 20, and ktin = 11.

Multi-frame fusion. To adaptively determine which frame

and which region should be selected, the multi-frame fusion

strategy is illustrated in Algorithm S3. The parameters in

the Algorithm S3 are set to ηu = 25k, ηr = 1.2, and ηs =
2k.

S2. Synthetic Dataset for Training

We proposed a model-based synthetic dataset in this pa-

per. The settings of the homography parameters are as fol-

lows: The maximum rotation angle θ is set to 10◦. The

range of scaling s is set to 0.7 ∼ 1.3. The maximum trans-

lations (dx, dy) in the x and y directions are 100 and 70,

respectively. The maximum perspective factors in the x di-

rection and in the y direction are 0.1 and 0.15.

For different training requirements, we apply various

combinations of synthetic dataset, as shown in Fig. S2

(more visualizations can be found in the Supplementary

Video). For camera pose regression, we use the large

FOV video pair of stable and unstable. For training the

flow smoothing network, we alternatively adopt small FOV

video pairs, which simulate coarsely stabilized video. Aim-

ing at the flow outpainting network, we take small-FOV sta-

ble videos for training and large-FOV for ground-truth su-

pervising.

Data for Camera Pose Regression. For training the cam-

era pose regression network, we need to generate unstable

videos. For every frame, a random homography matrix pro-

duces an unstable frame. In practice, the perspective ef-
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Figure S1: Pipeline of margin fusion approach. Given the target frame It, the reference frame Is is coarsely aligned to

Iwarp by the predicted large-FOV flow field Ylarge . Then, It and Iwarp are cropped and re-aligned. Per Algorithm S2, the

deduced mask MIt is fused with It and Iwarp
c to obtain the resulting frame.

Flow outpaintingFlow smoothingCamera pose regression

Stable (large FOV) Unstable (large FOV) Stable (small FOV) Unstable (small FOV) Stable (large FOV) Stable (small FOV)

Figure S2: Visualization of our model-based synthetic dataset. We designed different combinations of dataset for varying

tasks.

fects in the x direction and the y direction are restricted to

1e−5 ∼ 5e−5. The pose between two unstable frames is

parameterized by rotation, scaling, and translation.

Data for Flow smoothing. For training the flow smoothing

network, we need to generate unstable videos with small

FOV. Specifically, for the stable video, we randomly gener-



Algorithm S2 Outpainting mask Algorithm

Input: It: target frame; Itc: cropped target frame; Isc :

cropped source frame; Iwarp
c : warped frame of Isc ; M t:

valid mask of It; M t
c : valid mask of Itc;

Output: MIt : unchanged mask of It;
1: extract feature maps with VGG-16 network f tc =
V GG(Itc) , fwarp

c = V GG(Iwarp
c );

2: calculate the Euclidean distance in feature space D =∥
f tc − fwarp

c ∥2;

3: MD = D < δD;

4: labeled region Mlabel;

5: for i, j = 0; i < h, j < w; i++, j ++ do

6: if ∼M t[i, j] then Mlabel[i, j] = 1;

7: else if M t[i, j]&(∼ M t
c [i, j]) then Mlabel[i, j] =

2;

8: else if M t[i, j]&M t
c [i, j]&MD[i, j] then

Mlabel[i, j] = 0;

9: elseMlabel[i, j] = −1;

10: end if

11: end for

12: tin =Mlabel, tout = 0, f lag = True;
13: while Sum(tin − tout) > ηt do

14: if flag then

15: tin = tout, f lag = False;
16: end if

17: inflate tin with kernel size ktin , obtain tout =
inflate(tin);

18: tout[Mlabel == 1] = 1;

19: tout[Mlabel == −1] = −1;

20: end while

21: MIt = (tout == 2);

ate a series of cropping mask. The cropped stable video will

be jittered by random homography transformations. Then,

we obtain a cropped unstable video for training and the

cropped stable video for supervision.

Data for Flow Outpainting. To supervise the learning of

large-FOV optical flow fields, we mask the boundaries of

stable videos. Specifically, we set up a sliding window

640 × 360, which moves randomly with the video time-

line. Then, we obtain a cropped video for training and the

corresponding full-frame video for supervision.

S3. Implementation Details

We will illustrate the training details of different net-

works, including the camera pose regression network, the

optical flow smoothing network, and the flow outpainting

network. All networks are implemented using Pytorch.

Camera pose regression network. We first describe the

architecture of the camera pose regression network. The

network processes each input concatenated tensor fin ∈

Algorithm S3 Multi-frame Fusion Algorithm

Input: It: target frame; Iwarp
ck

: warped of cropping source

frame Isk; Iresultk : margin outpainting result of Iwarp
ck

;

Mwarp
k : valid mask of Iwarp

ck
;

Output: Ifuse: output fusion frame;

1: calculate the filling areaAs
k, misaligned region areaAu

k ,

and corresponding IoU ration Sk = Au
k/(A

s
k + 1) of

Iwarp
ck

;

2: sorted by As
k to obtain index list IDs;

3: Ifuse = It,Mfuse =Mwarp
k ;

4: for k in IDs do

5: if (Au
k < ηu)&(Sk > ηr)&(As

k > ηs) then

6: compute overlapped area Ao
k between Iwarp

ck

and Ifuse;

7: if (Ao
k/A

s
k < δr) then

8: Ifuse = Ifuse · (∼ Mwarp
k ) + Iresultk ·

Mwarp
k

9: end if

10: else

11: continue;

12: end if

13: end for

R
b×3×h×w with several 2D convolutional layers, where b

indicates the batch dimension and h×w indicates the spatial

dimensions. The final predicted parameters are obtained by

a series of 1D convolutional layers. We use a batch size of

40 and train for 10k iterations. we use Adam optimizer [3]

with a constant leaning rate of 10−4 for the first 4k iter-

ations, followed by an exponential decay of 0.99995 until

iteration 10k. The input resolution is set to 256× 512. The

weights in training loss Eq. (5) and Eq. (7) in the main pa-

per are set to λθ = 1.0, λs = 1.0, λt = 1.5, λgrid = 2.0
for the first 6k iterations and λθ = 2.0, λs = 8.0, λt =
1.0, λgrid = 2.0 for the remaining 4k iterations.

Optical flow smoothing network. We use a batch size of 6
and train for 20k iterations. we use Adam optimizer [3] with

a constant leaning rate of 10−4 for the first 10k iterations,

followed by an exponential decay of 0.99995 until iteration

20k. The input resolution is set to 488× 768.

Flow outpainting network. We apply an Unet architec-

ture with gated convolution layers [7] as a flow-outpainting

network. We use a batch size of 12 and train for 20k itera-

tions. we use the Adam optimizer [3] with a constant lean-

ing rate of 10−4. The input resolution is set to 488 × 768.

The weights in training loss Eq. (14) in the main article are

set to λin = 2.0, λout = 1.0, λF = 10.0 for the first 10k
iterations and λin = 0.6, λout = 1.0, λF = 0.0 for the

remaining 10k iterations.



S4. Qualitative Evaluation

We show the results of the comparison of our method and

the latest approaches in Fig. S3. Most methods [2, 4, 6, 9]

suffer from a large amount of cropping, as indicated by the

green checkerboard regions. Compared to full frame ren-

dering approaches for interpolation [1] / generation [5], our

method shows fewer visual artifacts. In particular, FuSta [5]

would discard most of the input frame content for stabiliza-

tion and deblurring, while we argue that video stabilization

is based on destroying as little of the input frame content as

possible. Thus, our method preserves the original content

of the input frame as much as possible. We strongly recom-

mend that the reviewers see our additional supplementary

video, especially the comparison with other full-frame ap-

proaches (FuSta [5], DIFRINT [1]).

S5. More Experimental Results

Per-category Evaluation. We present the the average

scores for the 6 categories in the NUS dataset [4].

Two-stage Stabilization. To illustrate our two-stage stabi-

lization method, we conduct an interesting experiment. We

tracked the position (x, y) of a fixed keypoint in 10 frames,

where every two frames were spaced 5 frames apart. As

shown in Fig. S5, the trajectory of the shaky keypoint con-

verges to a fixed/stable position through two-stage stabiliza-

tion.

Trade-off Evaluation. We have conducted the experiment

to illustrate the trade-off between runtime speed and perfor-

mance by varying the number of iterations in the probabilis-

tic stabilization network and the number of input frames in

the video outpainting network (as shown in the Table S1).

Notably, our default configuration, consisting of 3 iterations

and 7 input frames, was determined as the optimal balance

between runtime speed and performance.

Table S1: The trade-off experiment between runtime speed

and performance.

Iter. Time S.↑ Frames Time D.↑

1 69ms 0.80 3 57ms 0.83

2 84ms 0.84 5 78ms 0.88

3 97ms 0.86 7 97ms 0.91

4 111ms 0.86 11 132ms 0.90

Analysis of Runtime. We attribute the faster runtime of

our approach against FuSta to the following three reasons:

i) The traditional pose regression algorithm used in FuSta is

10 times slower than our proposed pose regression network

(see Section 6.4); ii) Our method only requires computing

optical flow once per frame, while FuSta requires comput-

ing it three times and relies on additional task-specific op-

timization and manual adjustments (see Section 6.4); iii) In

the rendering stage, FuSta takes input from 11 RGB frames

and their corresponding optical flow, whereas our approach

only requires 7 frames. We will highlight these reasons in

the final version of the manuscript.

S6. Network Architectures

Camera pose regression network. We first describe the

architecture of the camera pose regression network. Given

a concatenated input tensor fin ∈ R
3×H×W , we process

it with multiple down-sampled convolution layers and flat-

ten the output feature map to fout ∈ R
d× HW

D×D , where d,D
denotes the dimension of the feature channel and the spa-

tial down-sampling ratio, respectively. The feature vector

fsum, obtained by weighting the sum of fout along the fea-

ture channel, regresses all parameters of the affine transfor-

mation. given by

w = ψ(fout), fsum =

HW

D×D∑

i=0

wifout(i, ·), {θ, s, dx, dy} = ℧(fsum) .

(S1)

Specifically, The network processes each input concate-

nated tensor fin ∈ R
b×3×h×w with several 2D convolu-

tional layers, as shown in Table S2, where b indicates the

batch dimension and h×w indicate the spatial dimensions.

The final predicted parameters are obtained by a series of

1D convolutional layers.

Table S2: Modular architecture of camera pose regression

network modules. Each convolution operator is followed by

batch normalization and LeakyReLU (negative slope=0.1),

except for the last one. K refers to the kernel size, s denotes

the stride, and p indicates the padding. We apply the Max-

pooling layer to downsample each feature map.

Input Size Convolution Layer Output Size

(K ×K, s, p)

Feature map extraction

input: b× 3× h× w conv0: (3× 3, 1, 1) b× 8× h× w

conv0: b× 8× h× w conv1: (3× 3, 1, 1) b× 32× h× w

conv1: b× 32× h× w pool1: (5× 5, 2, 4) b× 32×
h

4
×

w

4

pool1: b× 32×
h

4
×

w

4
conv2: (3× 3, 1, 1) b× 64×

h

4
×

w

4

conv2: b× 64×
h

4
×

w

4
pool2: (5× 5, 2, 4) b× 64×

h

16
×

w

16

pool2: b× 64×
h

16
×

w

16
conv3: (3× 3, 1, 1) b× 64×

h

16
×

w

16

Camera pose regression

input: b× 64× 1 conv1: (1, 1, 0) b× 32× 1

conv1: b× 32× 1 conv2: (1, 1, 0) b× 16× 1

conv2: b× 16× 1 conv3: (1, 1, 0) b× 4× 1
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Figure S3: Visual comparison to state-of-the-art methods. Our proposed method does not suffer from aggressive cropping

of frame borders [2, 4, 6, 9] and rendering artifacts than DIFRINT [1] and FuSta [5]. Specially, we keep more of the content

in the input frames than FuSta [5].

Flow outpainting network. We apply a Unet architecture

with gated convolution layers [7] as a flow outpainting net-

work, as shown in Table S3.

S7. Limitations

Although our method achieves a comparable stability

score, we use only a simple Gaussian sliding window filter
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Figure S4: Per-category quantitative evaluation on NUS

dataset. We compare the cropping ratio, distortion value,

and stability score with state-of-the-art methods [2, 4, 6, 8,

9, 5, 1].

x y

Unstable

Coarse-

stabilization

Refine-

stabilization

···

Figure S5: Illustration of our iterative optimization-

based stabilization algorithm.

to smooth the camera trajectory in the coarse stage, leav-

ing room for further improvement. In addition, our render-

ing strategy could generate artifacts in human-dense scenar-

ios due to the nonrigid transformation of the human body,

breaking our assumption of local spatial coherence.
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