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This document provides additional details for ICCV pa-
per “GasMono: Geometry-Aided Self-Supervised monocu-
lar depth estimation for indoor scenes”.

ResNet MPViT

Figure 1. Attention maps by different encoders. On top: RGB
image and depth map by models using CNN-based (ResNet) and
transformer-based (MPViT) encoders. At bottom: untextured re-
gion highlighted on RGB image and attention maps by ResNet and
MPViT based models.

1. Ablation studies
For the sake of space, we complement here the ablation

studies reported in the main paper.
Encoder: Benefiting from the global feature extraction

of the transformer, the model can infer the depth of low-
texture regions more accurately text to global attention. Fig.
1 visually shows an intuition of this mechanism: on left, we
show an RGB image with a large, untextured wall, high-
lighted in green on the second row. A model with a ResNet
encoder cannot estimate an accurate depth map (second col-
umn), as the attention of the last features is mainly focused
on the low-texture area on top of the image. Conversely, the
output of a model using MPVit as a backbone results coher-
ent, thanks to the global guidance it can recover from the
bottom regions of the image showing richer texture. Fur-
thermore, we report an ablation study in Tab. 1 compar-
ing the results yielded by MPViT variants [5] (tiny, xsmall,
small, base). We identify a good trade-off between accu-
racy and complexity in “MPViT-small”, which we use as
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Figure 2. Architecture of Depth Network. The network takes a
single RGB image as input and outputs four full-resolution dispar-
ity maps [S0, S1, S2, S3].

the encoder backbone for all our experiments in the main
paper.

Low texture regions: To further verify the effectiveness
of different encoders on low-texture regions, we evaluate
the depth estimation performance of models on low-texture
regions. We use image gradient information to select and
locate low-texture regions, as shown in Fig.4. As shown in
Table 1 (V-X), with the global modeling ability of the trans-
former, the MPViT encoder shows outstanding performance
on low-texture regions than CNN encoders.

Decoder: For the depth decoder, we follow the architec-
ture design proposed by Monodepth2 [3], yet we implement
convex upsampling as proposed by RAFT [8], to output four
full resolution disparity maps, i.e. depth maps [S0, S1, S2,
S3] in Fig. 2. We compare the accuracy yielded by the
standard decoders proposed by Monodepth2 [3] and ours in
Table 1, rows (E-H). We can notice that our decoder allows
for improving the results by both Monodepth2 itself and our
network architecture.

ISD: As shown in Table 1 (K-R), with the help of the
iterative self-distillation method we proposed in this paper,
depth maps are accurate at any scale. Note that the depth
map S3 is as accurate as the depth map S0, which means
that the final features extracted by the encoder include the
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Details Params lower is better higher is better
Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log ↓ δ1 ↑ δ2 ↑ δ3 ↑

Different ResNet and MPViT [5] variants
(A) ResNet–18 11.6M 0.141 0.107 0.533 0.183 0.812 0.957 0.989
(B) ResNet–34 21.8M 0.133 0.100 0.517 0.174 0.828 0.963 0.991
(C) MPViT-tiny 5.8M 0.122 0.087 0.478 0.162 0.854 0.969 0.992
(D) MPViT-xsmall 10.5M 0.117 0.085 0.472 0.157 0.863 0.972 0.992
(E) MPViT-small 22.8M 0.113 0.083 0.459 0.153 0.871 0.973 0.992
(F) MPViT-base 74.8M 0.113 0.085 0.466 0.153 0.872 0.973 0.993

Trainig framework Decoder Different decoders
(G) Monodepth2 [3] Monodepth2 [3] 0.167 0.137 0.603 0.208 0.754 0.944 0.985
(H) Monodepth2 [3] ours 0.161 0.130 0.586 0.202 0.767 0.949 0.988
(I) Ours Monodepth2 [3] 0.114 0.086 0.465 0.154 0.869 0.972 0.992
(J) Ours ours 0.113 0.083 0.459 0.153 0.871 0.973 0.992

Details Scale Disparity maps from different scale
(K) Ours S0 0.113 0.083 0.459 0.153 0.871 0.973 0.992
(L) Ours(w/o ISD) S0 0.114 0.085 0.469 0.156 0.867 0.972 0.992
(M) Ours S1 0.114 0.082 0.459 0.153 0.870 0.973 0.993
(N) Ours( w/o ISD) S1 0.139 0.099 0.522 0.177 0.822 0.968 0.992
(O) Ours S2 0.114 0.082 0.458 0.153 0.869 0.973 0.993
(P) Ours( w/o ISD) S2 0.175 0.299 0.918 0.231 0.791 0.947 0.980
(Q) Ours S3 0.114 0.082 0.460 0.153 0.868 0.973 0.993
(R) Ours( w/o ISD) S3 0.203 0.534 1.122 0.272 0.787 0.943 0.972

Details n | training time Results under different number of iterations
(S) Ours 1 | 26.2h 0.115 0.084 0.467 0.155 0.867 0.973 0.992
(T) Ours 2 | 44.3 h 0.113 0.083 0.459 0.153 0.871 0.973 0.992
(U) Ours 3 | 64.1h 0.112 0.082 0.460 0.152 0.873 0.973 0.992

Details test regions Results of different encoders on low texture regions
(V) R18 (GasMono training framework)

Low Texture
0.140 0.106 0.527 0.181 0.816 0.958 0.990

(W) R34 (GasMono training framework) 0.131 0.099 0.512 0.172 0.834 0.963 0.991
(X) MPViT-small (GasMono training framework) 0.110 0.082 0.453 0.149 0.877 0.974 0.993

Table 1. Ablation Studies on NYUv2. We test the depth encoder based on different MPViT variants and different depth decoders on
NYUv2 datasets. The effects of ISD on the accuracy of each scale depth map are also evaluated. We also test the performance of different
encoders on low-texture regions.

Depth Encoder Pose Estimation lower is better higher is better
Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log ↓ δ1 ↑ δ2 ↑ δ3 ↑

(i1) ResNet–18 Monoindoor++ [6] 0.149 0.116 0.551 0.190 0.800 0.953 0.988
(i2) ResNet–18 GasMono(ours) 0.141 0.107 0.533 0.183 0.812 0.957 0.989
(ii1) MPViT-small Monoindoor++ [6] 0.124 0.092 0.488 0.163 0.851 0.970 0.992
(ii2) MPViT-small GasMono(ours) 0.113 0.083 0.459 0.153 0.871 0.973 0.992

Table 2. Ablation Studies of different pose estimation methods on NYUv2 dataset. To compare with the SoTA method – monoin-
door++, we replace the pose estimation method proposed in GasMono with that proposed in monoindoor++. Except for the pose estimation
part, the settings of the training process are all the same.

key information for depth inferring, and with the help of
skip connection, the depth is optimized as information in-
creases. Besides, we also do an ablation study on the num-
ber of iterations n, as shown in Table 1 (S-U). When n = 1,
the self-distillation method cannot improve the accuracy of
the depth labels already obtained by the framework itself,
having a negative impact on the performance. When using
n > 1, ISD allows for getting better pseudo labels, thereby
yielding a much better depth model after training. In the
main paper, we select n = 2, since further increases do not
yield substantial improvement, yet increasing notably the
total training time.

2. Coarse Pose analysis

We now further inquire about the use of coarse poses
obtained through COLMAP.

COLMAP for coarse poses: COLMAP is executed of-
fline, so it does not affect training/inference time directly. It
only delays the start of the training (on NYUv2, a single se-
quence takes ∼ 10 min, with sequences being processed in
parallel), a delay we can tolerate given the SoTA accuracy it
yields. Since some sequences in NYUv2 are very short, and
some scenes (like the bathroom) expose many low-texture
regions, COLMAP may fail on some of these sequences,
which are excluded from the training set training.

One of the most important and valuable points in this pa-
per is: the scale ambiguity observed across the hundred se-
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Figure 3. Visualization of the coarse rotation optimization. The two samples are based on inaccurate and accurate coarse rotations, and
both the rotations between the source and target images are large, resulting in large unreconstructable regions. With the accurate coarse
rotation, the coarse pose with translation optimization (Optim t) can get a satisfactory reconstruction, see 2nd sample. While the coarse
rotation is inaccurate, we need to improve the rotation further, otherwise, it will introduce noise into training, see the reconstruction loss of
1st sample. Besides, as shown in the reconstruction loss, the rotation from the coarse pose can eliminate most rotation components, which
makes it possible to directly estimate the residual rotation using a pose network.

Figure 4. Low texture regions for depth evaluation.

quences used for training makes COLMAP use not as sim-
ple/effective as expected, avoiding network convergence –
see Tab.1 (a-g) in the paper. Indeed, using COLMAP poses
alone is, counter-intuitively, harmful to indoor SMDE.

Translation rescaling and refinement: By its nature,
our AlignNet learns to regress a scale value that is meaning-
ful for training images only – i.e., it aligns the scale of the
translation component of COLMAP poses on the training
set, to allow for DepthNet convergence (Tab. 1). As such, it
is a training optimization tool only, and it would be ineffec-
tive on test images. Therefore, considering the tightly cou-
pled relationship between the depth estimation part and the
pose estimation part, we use the performance of the depth
network to verify the effectiveness of pose optimization –
see Tab.1 (a-g) in the paper. After translation rescaling
and refinement, our GasMono has achieved SoTA perfor-
mance – see Tab.1 (n) in the paper.

Rotation optimization: The above part only focuses on
translation optimization, though the rotation of coarse poses
can also be inaccurate and noisy, so rotation optimization is
proposed. To further show the effect of rotation optimiza-

tion within the training, in Fig. 3, we report two samples
with inaccurate coarse rotation (top sample) and accurate
coarse rotation (bottom sample) respectively. For both, we
compute the reconstruction losses based on “Optim t” and
“Optim R” and show them in column 3, based on estimated
depth (column 4). For the first sample, because of the inac-
curate coarse rotation, optimizing only for translation (“Op-
tim t”, row 1) cannot compensate for the wrong rotation and
thus yield a high reprojection error. After refining the rota-
tion, the reconstruction based on “Optim R” (row 2) results
in a much lower photometric error. On the contrary, in case
of accurate coarse pose, shown as the second sample in the
figure, the reconstruction based on “Optim t” can already
achieve a reasonable reconstructed image.

Comparison with different pose estimation strate-
gies: To further prove the effectiveness of the pose es-
timation part in our GasMono, we compare it with the
SoTA self-supervised indoor framework – monoindoor++
[6]. Since the SoTA Monoindoor series [4, 6] do not open
source their code, we cannot construct experiments on the
Monoindoor framework. Therefore, based on our Gas-
Mono, we replace the pose estimation method with the one
proposed in monoindoor++, which is purely the learning-
based pose estimation method. Except for the pose esti-
mation part, the settings of the training process and loss
functions are all the same. Experimental results in Tab. 2
show that our proposed method yields more accurate re-
sults, which means that the proposed geometric-assisted
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Figure 5. Visualization on NYUv2. Our GasMono achieved finer-grained depth estimation than the baseline Monodepth2 [3] and recent
work SC-Depthv2 [1].
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Figure 6. Visualization on ScanNet [2] and 7scenes [7]. Generalization comparison with the Trianflow [9],Monodepth2 [3] and SC-
Depthv2 [1]. GasMono shows more accurate and finer-grained depth estimation on new scenes.

training framework as well as the proposed coarse pose op-
timization method are more practical, effective, and benefi-
cial for the indoor self-supervised monocular depth estima-
tion task.

3. Qualitative results

We report additional qualitative results to show a com-
parison with existing self-supervised frameworks.

Comparison with other methods – in-domain: We
show some qualitative results in Fig. 5, comparing some
existing methods with our GasMono framework. Ours out-
performs the baseline Monodepth2 [3] and a more recent
work, i.e. SC-Depthv2 [1], on fine-grained depth estima-
tion under different conditions. GasMono shows outstand-
ing performance when estimating depth at object details,
such as the bicycle (1st line), chair (2nd and 6-7th lines),



desk lamp (4th line), and so on. Besides, for large-scale
objects, like the sofa (3rd line), chair (12th), and treadmill
(13th), and dynamic objects, like people (9-10th lines), our
model shows very accurate results as well.

Comparison with other methods – generalization: We
also show more qualitative examples for generalization to
unseen datasets in Fig. 6. Compared with recent works [1,
3, 9], GasMono shows higher-quality results in estimating
the depth for unseen objects.

4. Limitations
Since our training framework builds on self-supervised

losses, GasMono still cannot perform well in regions
where reprojection constraints are violated, e.g. specu-
lar/transparent surfaces or surfaces with reflected light. As
shown in Fig. 7, since those regions do not satisfy the pho-
tometric consistency assumption, GasMono fails on highly-
specular or transparent surfaces.

Moreover, running COLMAP to obtain the coarse poses
– required to start the training – is time-consuming, in par-
ticular on datasets counting hundred of sequences made of
thousand frames each.

GT

GasMono

Figure 7. Limitations of GasMono. Since GasMono is trained
in a self-supervised manner, it cannot estimate a reasonable depth
for those regions with photometric changes.
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