Generative Prompt Model for Weakly Supervised Object Localization
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Dataset ‘ Ann. ‘ # Images ‘ How to collect ‘ t (s/img)
CUB-200-2011 [21] J 11,788 | Manual 1.5
Imagenet [17] J 14,197,122 | Manual 1.5
JFT-3B [7] gt 3,000,000,000 | Semi-automatic ~0
CCI12M [2] Tt 12,000,000 | Web crawler ~0
WIT [16] Tt 400,000,000 | Web crawler ~0
LAION-400M [19] gt 400,000,000 | Web crawler ~0
LAION-5B [18] Tt 5,850,000,000 | Web crawler ~0
Cityscapes [0] B 25,000 | Manual 375
COCO[!1] B 328,000 | Manual 375

Table 1: The size and data collecting approaches of some
commonly used datasets. J, T, B denotes the image cate-
gory labels, text descriptions and bounding box annotations
respectively. ¢ denotes the average annotation time per im-
age. T indicates the annotation is noisy.

A. Annotation Cost

As shown in Table 1, we compare the size and data col-
lection methods of commonly used datasets with three types
of annotations: image category labels, text descriptions, and
bounding boxes. It can be observed that datasets with accu-
rate bounding box labels, such as Cityscapes and COCO,
are usually small in size due to the high cost of manual
annotation. However, when using image category labels,
the dataset size can be increased to 14 million (e.g., Im-
ageNet). For datasets with a huge size, such as JFT-3B,
WIT, and LAION-5B, manual annotation becomes imprac-
tical. Instead, semi-automatic annotation methods or web
crawler algorithms are used to extensively collect noisy an-
notated data. Thanks to the rapid development of the In-
ternet, a large number of image-text pairs can be found in
websites, forums, and libraries, which are naturally anno-
tated by citizens and can be easily obtained by crawler al-
gorithms. Since collecting image-text pairs hardly requires
human participation, their annotation cost is negligible. In
this paper, the proposed method GenPromp is implemented
based the Stable Diffusion model, which is pre-trained on
LAION-5B. Accordingly, GenPromp hardly introduces ad-
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ImageNet-1K

Embedding Top-1 Loc Top-5 Loc GT-known Loc M-Ins Part More

fa 62.2 70.0 71.5 94 38 82
fr 64.9 73.1 74.7 95 24 173
fe 65.2 73.4 75.0 9.1 30 69

Table 2: Localization error statistics. The results are
correspond to row 17-19 in Table 6. “M-Ins”, “Part” and
“More” denote the multi-instance error, localization part er-
ror and localization more error respectively.

ditional annotation cost for a weakly supervised learning
system.

B. Prompt Ensemble

To further improve the performance of GenPromp, we
propose a prompt ensemble strategy. As shown in Fig. 1,
during training, we random select a template from a tem-
plate set. Then, we respectively fill the meta token
(goldfish) and the concept token ((goldfish)) into
the template to obtain the two input prompts, which are
used to learn the representative embedding f,.. During in-
ference, for each template in the template set, we com-
bines it with the two tokens to form the input prompts.
Then, all the prompts are encoded into prompt embed-
dings by the pre-trained CLIP model. After that, the dis-
criminative embedding f; is obtained by averaging the dis-
criminative embeddings generated by different templates
(e.8-fay, fdy, fds> fa, in Fig. 1), the representative embed-
ding f, is obtained by averaging the representative embed-
dings generated by different templates (e.g. fr,, frys frgs fra
in Fig. 1). Finally, f; and f,. are combined to f., which is
fed into the network to generate attention maps. In experi-
ments, we use a template set that consists of 7 templates:

“a photo of a { }”

“a rendering of a { }”

“the photo of a { }”

“a photo of my { }”

“a photo of the { }”

“a photo of one { }”

“a rendition of a { }”
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Figure 1: Workflow of the proposed prompt ensemble strategy. The image encoding and activate map generation proce-

dure are omitted for clarity.

ImageNet-1K

Noise € Top-1 Loc Top-5 Loc GT-known Loc
64.8 73.0 74.6
v 65.1 73.3 74.9

Table 3: Evaluation of noise levels in the inference time.
For the experiment that includes noise € in the inference
time, we conduct 10 experiments under different random
seeds and average their results as the final result.

C. Additional Experimental Results

Complete Performance Comparison with SOTA
Methods. Table 4 shows the complete performance com-
parison of the proposed GenPromp and the state-of-the-art
(SOTA) models (extension of Table 1 in the main docu-
ment). On CUB-200-2011 and ImageNet-1K dataset, Gen-
Promp surpasses the SOTA methods by significant margins.
Such strong results clearly demonstrate the superiority of
the generative model over conventional discriminative mod-
els for weakly supervised object localization.

Localization Error Analysis. To further reveal the ef-
fect of the proposed prompt embeddings (e.g. fq4, fr, fo)s
following TS-CAM [8&], we evaluate the localization er-
rors of: multi-instance error (M-Ins), localization part error
(Part), and localization more error (More). They are respec-
tively defined as follows.

* M-Ins indicates that the predicted bounding box inter-
sects with at least two ground-truth boxes, and loG >
0.3.

 Part indicates that the predicted bounding box only
cover the parts of object, and IoP > 0.5.

* More indicates that the predicted bounding box is
larger than the ground truth bounding box by a large
margin, and IoG > 0.7.

where 1oG and IoP are defined as Intersection over Ground
truth box and Intersection over Predict bounding box, re-
spectively (similar to IoU (Intersection over Union)). Each
metric calculates the percentage of images belonging to
corresponding error in the validation/test set. Please re-
fer to TS-CAM [8] for a detailed definition of the three
metrics. Table 2 lists localization error statistics of M-Ins,
Part, and More. Compare to the discriminative embedding
fa, the learned representative embedding f,. reduces both
Part and More errors by 1.4% (3.8% vs. 2.4%) and 0.9%
(8.2% vs. 7.3%) respectively, demonstrating that the repre-
sentative embedding alleviates the partial object activation
problem. By combining the representative embedding f,
with the discriminative embedding f;, the More errors drop
0.4% (7.3% vs. 6.9%) while the Part errors increase 0.6%
(3.0% vs. 2.4%) compared to f.. This demonstrates that
fe can further depress the background noise while keeping
relatively low Part errors.



CUB-200-2011 ImageNet-1K

Method Loc Back. Cls Back. Top-1 Loc Top-5Loc GT-known Loc Top-1 Loc Top-5 Loc GT-known Loc
CAMCcvpr16 [30] VGG16 41.1 50.7 55.1 42.8 54.9 59.0
ADLcvpr 19 [4] VGG16 52.4 - 75.4 449 - -
DANeticeve 19 [20] VGGl16 52.5 62.0 67.7 - - -
SLTcvpr21 [9] VGG16 67.8 - 87.6 51.2 62.4 67.2
FAMjccy21 [13] VGG16 69.3 - 89.3 52.0 - 71.7
TAFormerrpamraz [14] VGG16 72.0 85.9 90.8 534 67.7 74.0
BAScypr22 [23] VGG16 71.3 85.3 91.1 53.0 65.4 69.6
CAMCcvpr16 [30] MobileNetV1 48.1 59.2 63.3 43.4 54.4 59.0
HaSiceve17 [20] MobileNetV1 46.7 - 67.3 42.7 - 60.1
ADLcvypr 19 [4] MobileNetV1 47.7 - - 43.0 - -
FAMjccvor [13] MobileNetV1 65.7 - 85.7 46.2 - 62.1
TAFormerrpamraz [14] MobileNetV1 66.7 80.2 85.0 47.6 65.5 68.8
BAScypr22 [23] MobileNetV1 69.8 86.0 92.4 53.0 66.6 72.0
CAMcvpri6 [30] ResNet50 46.7 544 574 39.0 49.5 51.9
ADLcvypr 19 [4] ResNet50-SE 62.3 - - - - 48.5
FAMICCV'Z] [ ] ResNet50 73.7 - 85.7 54.5 - 64.6
SPOLcypro21 [22] ResNet50 80.1 93.4 96.5 59.1 67.2 69.0
TAFormerrpamr2z [14] ResNet50 75.0 87.8 91.2 57.5 69.9 75.5
DAcvypr22 [31] ResNet50 66.7 - 81.8 55.8 - 70.3
BAScypr22 [23] ResNet50 71.3 90.1 95.1 57.2 67.4 71.8
CAMCVPR’IG [ ] IHCBptiOl’lV3 41.1 50.7 55.1 46.3 58.2 62.7
DANetjcey 19 [26] InceptionV3 49.5 60.5 67.0 47.5 58.3 -
SLTcypr21 [9] InceptionV3 66.1 - 86.5 55.7 65.4 67.6
FAMICCV'ZI [ ] InceptionV3 70.7 - 87.3 55.2 - 68.6
TAFormertpamroz [14] InceptionV3 73.3 84.1 88.7 56.0 66.5 69.8
BASCVPR'ZZ [ ] InceptionV3 73.3 86.3 92.2 58.5 69.0 71.9
CREAMCcypr22 [25] InceptionV3 71.8 86.4 90.4 56.1 66.2 69.0
TS-CAMiccvor [8] Deit-S 71.3 83.8 87.7 534 64.3 67.6
LCTRaAAT22 [3] Deit-S 79.2 89.9 92.4 56.1 65.8 68.7
SCMEgccey22 [1] Deit-S 76.4 91.6 96.6 56.1 66.4 68.8
DiPSwacvw:23 [15] Deit-S TransFG [10] 88.2 - - - - -
PSOLcvpr2o [28]  DenseNetl61  EfficientNet-B7 80.9 90.0 91.8 58.0 65.0 66.3
C2AMcyproo [24]  DenseNet161  EfficientNet-B7 81.8 91.1 92.9 59.6 67.1 68.5
GenPromp (Ours) Stable Diffusion EfficientNet-B7 87.0 96.1 98.0 65.1 73.3 74.9
GenPromp7 (Ours) Stable Diffusion EfficientNet-B7 87.0 96.1 98.0 65.2 734 75.0
GenPrompt (Ours) Stable Diffusion  TransFG [10] 89.3 96.5 98.0 - - -

Table 4: Performance comparison of the proposed GenPromp approach with the state-of-the-art methods on the CUB-200-
2011 test set and ImageNet-1K validation set. Loc Back. denotes the localization backbone, Cls Back. the backbone for
classification, and T the prompt ensemble strategy, which ensembles the localization results from multiple prompts.

Effect of Noise ¢. In Table 3, we evaluate the perfor-
mance by setting the noise € (in Eq. 1 and Eq. 2 of the
main document) to O during inference. Without noise e,
the performance of GenPromp drops 0.3% in Top-1 Loc
in average. Similar to the methods [4, 5, 12, 20, 27, 29]
based on adversarial erasing, the input noise in GenPromp
can also alleviate the part activation issue, which drives the
network to mine the representative yet less discriminative
object parts.

Additional Restults with respect to Model Size and
Training Data. In Table 5, we re-implement TS-CAM
with larger backbone (e.g.Deit-B, ViT-L, ViT-H) and more
training data (e.g.LAION-2B). As the model size getting
larger, the performance of TS-CAM becomes worse on
CUB-200-2011 under GT-known Loc metric, Table 5(up-
per). As shown in Table 5(lower), by finetuning ViT-H-

based TS-CAM for 3 epochs on ImageNet-1K, it achieves
higher classification accuracy (74.7% vs. 74.3% on Top-
1 Cls) while much lower localization accuracy (53.2% vs.
67.6% on GT-known Loc) compared to the Deit-S-based
TS-CAM. By finetuning the model for more epochs (e.g.6
epochs), it achievea higher classification accuracy (77.4%
vs. 74.7% on Top-1 Cls) but lower localization accuracy
(52.2% vs. 53.2% under GT-known Loc metric), demon-
strating that more epochs can not improve the localization
performance of TS-CAM. We attribute this phenomenon to
the inherent flaw of the discriminatively trained classifica-
tion model, ¢.e., local discriminative regions are capable of
minimizing image classification loss but experience diffi-
culty in accurate object localization. A larger backbone and
more training data make this phenomenon even more seri-
ous.



CUB-200-2011

Method  Loc Back. Cls Back. Params. Top-1 Loc Top-5 Loc GT-known Loc Top-1 Cls Top-5 Cls
TS-CAM [8] Deit-S (ImageNet-1K) 22.4M 71.3 83.8 87.7 80.3 94.8
TS-CAM [&] Deit-B (ImageNet-1K) 87.2M 75.8 84.1 86.6 86.8 96.7
TS-CAM [8] VIiT-L (LAION-2B [18], ImageNet-1K, CUB(60epochs ft)) 304M 63.4 76.0 80.1 713 93.8
TS-CAM [8] ViT-H (LAION-2B [18], ImageNet-1K, CUB(60epochs ft)) 633M 10.7 20.2 329 29.1 56.8

GenPromp? Stable Diffusion EfficientNet-B7 1017M + 66M 87.0 96.1 98.0 88.7 97.9
ImageNet-1K
Method Loc Back. Cls Back. Params. Top-1 Loc Top-5Loc GT-known Loc Top-1 Cls Top-5 Cls
TS-CAM [§] Deit-S (ImageNet-1K) 22.4M 53.4 64.3 67.6 74.3 92.1
TS-CAM [8] ViT-H (LAION-2B [1£], ImageNet-1K(3epochs ft)) 633M 41.9 50.7 532 74.7 92.8
TS-CAM [8] ViIT-H (LAION-2B [18], ImageNet-1K(6epochs ft)) 633M 42.1 49.9 52.2 77.4 93.7
GenPromp?} Stable Diffusion EfficientNet-B7 1017M + 66M 65.2 73.4 75.0 85.1 97.2

Table 5: Performance comparison with respect to model size and training data. With a larger backbone and pre-training
dataset, the discriminatively trained method TS-CAM does not achieve higher performance.

. . .. . . ImageNet-1K
Multi-resolution Multi-timesteps Prompt Ensemble Prompt Embedding Finetune Top-T Loc Top-5 Loc GT-known Loc
1 fa 58.5 66.0 67.4
2 v fa 58.6 66.1 67.5
3 v fa 58.6 66.0 67.5
4 v v fa 61.2 69.0 70.4
5 v v fr (w/o init) 44.6 50.2 51.3
6 v v fr 64.0 72.1 73.7
7 v v fe (W/o init) 56.2 63.2 64.5
8 v v fe 64.5 72.7 74.2
9 v v v fa 61.5 69.2 70.7
10 v v v fr 64.2 72.3 73.8
11 v v v fe 64.6 72.8 74.3
12 v v fa v 62.0 69.8 714
13 v v fr v 64.9 73.1 74.6
14 v v fe v 65.1 73.3 74.9
15 v v fe v 65.0 73.2 74.8
16 v v fe v 62.3 70.3 71.8
17 v v v fa v 62.2 70.0 71.5
18 v v v fr v 64.9 73.1 74.7
19 v v v fe v 65.2 73.4 75.0

Table 6: Ablation of main components of GenPromp. For experiments that do not have a “v"” in Multi-resolution or
Multi-timesteps, we use a single resolution (16 x 16) or a single timestep (¢ = 100) for model inference.

Detailed Ablation Study. Table 6 provides a detailed
ablation of the performance contribution of each component
and their combinations, with respect to Multi-resolution,
Multi-timesteps, Prompt ensemble, Prompt embedding and
Finetuning.

D. Additional Visualization Results

In Fig. 2, we visualize the localization results of Gen-
Promp and compared them with the discriminatively trained

model (e.g.CAM [30]). The object Localization maps of
CAM (column b) suffer from partial object activation. Lo-
calization maps of GenPromp (column d) with sole repre-
sentative embeddings (f,.) covers more object extent but in-
troducing background noise. Those of GenPromp (column
e) with combined embeddings (f..) not only activate full ob-
ject extent but also depress background noise for precise
object localization.

We also provide additional visualization results of Fig.
2, Fig. 5 and Fig. 6 in the main document. The results are



shown in Fig. 3, Fig. 4 and Fig. 5 respectively.
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(a) Image (b) CAM (c) GenPromp (f;)  (d) GenPromp (f,.)  (e) GenPromp (f;)

Figure 2: Comparison of activation maps between CAM and GenPromp.
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Figure 3: Visualization of cross attention maps. Attention maps with respect to multiple resolutions and multiple noise
levels (timesteps t) are aggregated to obtain the final localization map. The characteristics of these attention maps can be
concluded as follows: (1) Attention maps with higher resolution can provide more detailed localization clues but introduce
more noise. (2) Attention maps of different layers can focus on different parts of the target object. (3) Smaller ¢ provides
a less noisy background but tends to partial object activation. (4) Larger ¢ activates the target object more completely but
introduces more background noise.
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Figure 4: Activation maps and localization results using discriminative and representative embeddings. A proper
combination of discriminative embeddings f; with representative embedding f,. as the prompt produces precise activation
maps and good WSOL results (green boxes).
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Figure 5: Object localization results of GenPromp using different prompt words.



