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Abstract

This supplementary material provides further details on

our method as well as additional experimental results in-

cluding an ablation study and more baseline comparisons.

A. More results

We show two extra results on B-AIST++ [19] in Figs.

E.7 and E.8 and one on the synthetic BC-CAPE dataset in

Fig. E.5. In Fig. E.9, we compare our method with BIN [14]

and AfB [19] on a real example with 4 averaged frames.

An example of the BC-CAPE dataset construction is shown

in Fig. E.1. We also included a supplementary video that

shows all examples from the main paper.

B. Ablation study

In Table D.1, we provide an ablation study on part of the

BT-AMASS dataset. To evaluate the performance of dif-

ferent loss terms, we test our model by excluding each of

loss terms individually while keeping all other experimen-

tal conditions the same. Specifically, we test our method

each time without Background regularization LB , Polyno-

mial regularization LC , SMPL shape regularization Lβ , and

Surface texture smoothness LS . Then, we evaluate their

performance using the IoU and MPJPE losses.

C. Baselines

We clarify that we use Animation-from-Blur (AfB) [19]

that was pre-trained on B-AIST++ [19]. Similarly, we use

the pre-trained version from Jin et al. [4] and the Blurry

Video Frame Interpolation (BIN) [14]. We crop input im-

ages with a tight bounding box for AfB [19] as suggested

by the authors.

Version MPJPE↓ IoU↑

HfB L (11) 79.1 0.79

HfB w/o LB (9) 81.6 0.79

HfB w/o LC (8) 89.1 0.76

HfB w/o Lβ (7) 81.4 0.75

HfB w/o LP (6) 100.1 0.73

HfB w/o LS (5) 80.5 0.77

HfB w/o Lα (4) 112.4 0.53

HfB w/o LI (3) 84.5 0.77

Table D.1. Ablation study with 311 samples generated from our

synthetic dataset BT-AMASS with blur rates ∈ (0.2, 0.5).

Dataset # of polynomials
4-order 5-order

MPJPE PA-MPJPE MPJPE PA-MPJPE

CMU [2] 87787 5.10 3.68 3.56 2.36

ACCAD [1] 13250 5.77 4.85 4.60 3.18

Table D.2. Reconstruction error for different polynomial or-

ders. More parameters and a higher order lead to a better model

fit and lower errors.

D. Motion prior details

First, we uniformly sample the short motion sequence of

the body joint rotations θJ [n] from the AMASS dataset [10]

(mainly, CMU [2] and ACCAD [1]) with 10 to 90 frames

(n ∈ (10, 90)), which translates to blur rates between 0.01

and 0.75. Then, we use the least squares method to fit poly-

nomials to obtain ground truth polynomial coefficients C.

The reconstruction error of the polynomials is shown in Ta-

ble D.2. We denote the temporally normalized coefficients

as Cn, which are converted from the original time interval

[0, to] with to = n/fps to [0, 1].

The sampled coefficient C is concatenated with the tem-

porally normalized coefficient as C = [C,Cn], which has

corresponding indicator function map Ic = 0
J×3. Coeffi-

cients C are randomly augmented with noise and reversed

joint motion to get coefficient matrix C̃ = [C̃,C̃n]. The
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entry with value 1 in indicator function Ĩc indicates which

joints’ coefficients are unrealistic. The generator G tries

to output corrected coefficients Ĉ close to true coefficients

C. The discriminator D tries to discriminate C̃, Ĉ, and C.

Inspired by [11], the training is supervised jointly by two

loss terms. The adversarial loss Ladv contains adversarial

and binary cross-entropy terms. The generator loss LG is

a reconstruction loss that includes three terms. The first is

L1 loss LC between the coefficient matrix predicted by the

correction generator and the ground truth. The second loss

is L2 loss LPose between the reconstructed pose and the

ground truth pose. The last one LJP is the mean per joint

position error (MPJPE) [15] between the reconstructed joint

positions and the ground truth SMPL joint positions. All

loss terms are summarized here:

Ladv = −E[log (1− |Ĩc −D(C̃)|) + log(1− |D(C)|)]

−E[logD(G(C̃, D′(C̃))) + logD(G(C, D′(C)))] (2)

Lrec = LC + LPose + LJP (3)

LC = |G(C̃, D′(C̃))−C|+ |G(C, D′(C))−C| (4)

LPose = ∥Pose(G̃)− Pose(C)∥2
+∥Pose(G)− Pose(C)∥2 (5)

LJP = MPJPE(Joint(Pose(G̃)), Joint(Pose(C)))
+MPJPE(Joint(Pose(G)), Joint(Pose(C))) (6)

Ltotal = λrecLrec + λadvLadv (7)

Instead of ground truth indicator Ĩc and 0, we feed the

detached predicted indicator function D′(C̃) and D′(C) to

the generator. The generator and discriminator also take the

sequences as input, which is decomposed from the coeffi-

cients C̃ and C with exposure time t. The generator and

discriminator have a similar structure that contain convolu-

tions and self-attention layers. The output features of the

above layers are passed to a 1×1 convolution, followed by

an MLP.

E. Limitations

Non-tight clothing. Our model optimizes the basic SMPL

body model without clothes, which limits the performance

on real data when the human is dressed in loose-fitting

clothing. As shown in Fig. E.8, in such case the optimiza-

tion results in a more obese body shape since silhouette and

photometric consistency are the major losses that dominate

the optimization. The proposed model may fail on humans

with more complex or wider clothing. A potential solution

is to introduce clothed SMPL models [3, 9].

Coarse texture. As shown in Fig. 3 in the main paper,

our model also optimizes the human texture. Some exam-

ples are shown in Fig. E.2. However, the optimized texture

is not on par with the ground truth sharp texture, especially

when the human wears non-tight clothing. Since the core of

our method is a gradient descent with differentiable render-

ing, the lighting is not considered, which makes the textures

Original Clothed Blurred

Figure E.1. BC-CAPE dataset construction. The original

CAPE [9] human body dataset contains no texture or clothes.

Since their human body representation is also an SMPL [12]

model, we use textures from the SURREAL [16] dataset. Then,

blurry inputs are generated by temporal integration and interpola-

tion between neighboring recorded meshes.

Texture from Fig. E.5 Texture from Fig. E.7

Figure E.2. Examples of texture estimation. The top row shows

our deblurred sub-frame estimation, and the bottom row shows the

corresponding optimized texture maps in the SMPL format.

even less accurate. Thus, when comparing the deblurring

quality with usual deblurring metrics, e.g. PSNR and SSIM,

our method has poor performance. However, the primary

purpose of our method is not deblurring and sharp texture

estimation from blurry images. Our main goal is sub-frame

accurate human pose estimation from blurry images. Accu-

rate sharp texture estimation is a direction for future work.

Failure of HPE model. Our method employs a Human

Pose Estimation (HPE) model for the initial pose. We show

the comparison of several different HPE models on real blur

examples in Fig. E.4. We observed that METRO [7] and

HybrIK [6] are usually robust against the blurry input and

produce a single pose, which is usually a random sub-frame

pose Examples are shown in Fig. E.3.

Background as input. Our model requires a background

image without the blurry human as additional input, which

could limit in-the-wild applications. As shown in Fig. E.6,

the background matting model BGMv2 [8] can produce ar-



Input METRO [7] HybrIK [6]

× ×

□□□ ×

√
□□□

Figure E.3. Failure of initial human pose estimation. In some

cases, when the initialization is far from the real pose, our method

cannot converge to the right solution. We have notations for three

cases: (
√

) converges and initial pose is one of the sub-frame

poses, (□□□) still converges but initial pose is not one of the sub-

frame poses, and (×) does not converge. In the top row, both

models predict a flipped pose, which optimization cannot rotate

back. The middle row shows a fast squatting pose with stretched

arms, for which only the METRO [7] initialization allows for con-

vergence by predicting a standing pose. In the bottom row, only

the METRO [7] detects the moving leg.

tifacts for large amounts of blur. Since BGMv2 is designed

and trained for a general matting problem, fine-tuning it on

highly motion-blurry inputs may improve the performance

of our method.
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Figure E.4. Robustness w.r.t. blur. We test several models on real data. Notice the misalignment for larger blur rates. PyMaF [18] and

VIBE [5] depend on YOLO [13] tracking method to get consistent tracking of bounding boxes between frames. YOLO [13] shows less

robustness against blur. We show an example of PyMaF [18] reconstruction in Fig. E.8.
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Figure E.5. Results on the BC-CAPE dataset.
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Figure E.6. Examples of inconsistent background matting. The top row is the real image from Fig. 1 in the main paper, while the bottom

row is a synthetic image from Fig. E.5 in this supplementary file. The estimated background matting by BGMv2 [8] shows slight errors,

but HfB still estimates the correct motion.
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Figure E.7. Comparison on real data. We show an input with three averaged frames from B-AIST++ [19]. In the right-most column, we

show the initial matting BGMv2 [8] (top) and the optimized result from our method (bottom).
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Figure E.8. Comparison on real data: three averaged frames from the B-AIST++ [19] dataset. Since the human subject is dressed in

loose-fitting clothing, HfB incorrectly estimates an obese body shape because the clothing is not modeled explicitly. We also show an

additional result of PyMaF [18], which is applied to the prediction from AfB [19]. Even though PyMaF [18] is video-based, it shows

discontinuity on coarse inputs, e.g. the third frame.
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Figure E.9. Qualitative multi-frame evaluation on a real video. For small amounts of motion blur, the performance of image-deblurring-

based methods is typically good, but for larger amounts of blur (as in Frame #3), their deblurring often fails, and the subsequent human

model fitting becomes rather noisy.


