Incremental Generalized Category Discovery

— Supplementary Material

Oisin Mac Aodha

University of Edinburgh
https://bzhao.me/iNatIGCD

Bingchen Zhao

HPN] 0 OV ot
Dy = {0y

2

1 1 2 2
Dt//llub = {X/} Duuluh = {Xi}
Model Training
N Train N Update & N Update & :
S Discovery > Discovery >
Model Model Model
Stage 0 . Stage 1 . Stage 2 .

Labeled Data

IGCD-u
Data Collection
0,0 . 1 1 2 _ (2
................... XYt Punta = B3 Puuntap = 1}
Model Training ~ :
. Update & Update &
g Train I Discovery HER Discovery :
M_odel MPdel Ml_)del
Stage 0 : Stage 1 Stage 2

Unlabeled Data

Figure Al: The two incremental learning settings used in our work. In the IGCD-I setting, at each stage we have one
unlabeled set and one labeled set. The unlabeled set is annotated at the end of each stage and then used as the labeled set for
the next stage. In the IGCD-u setting, only the unlabeled set is provided at each incremental stage, i.e. after the initial label

data is given in Stage-0, no additional labels are provided.

A. iNatIGCD Dataset

In Tab. Al, we compare our dataset split to common
benchmarks used by previous papers. Our new iNatIGCD
benchmark has more categories and images per stage and
thus can be used to better evaluate the performance of gen-
eralized category discovery methods.

B. Additional Results
B.1. Additional Ablations

Impact of the Size of R. In addition to the ablation on
the size of the support set S in the main paper, here we
present results where we vary the size of the replay buffer
R. Similar to the ablation of the size of S, we denote the
number of images in R as N and the number of cate-
gories in R as K. The results are presented in Tab. A2.
The default value used by our method is illustrated by the
gray row, i.e. the second row. We observe a similar trend
as Table 6 in the main paper where increasing the number
of examples increases the performance. However, the larger
number impacts training efficiency especially in the context
of the large number of categories in our iNatIGCD dataset.
CLIP pretrained features. We also performed ablation
experiments on iNatIGCD-I using CLIP pre-trained feature

extractor. In Tab. A3, we can see that due to the challenging
fine-grained nature of iNatIGCD, the model failed to per-
form discovery well. But overall the pre-trained CLIP fea-
ture extractor improves the performance, and our method
still achieves the best performance.

Density Selection Parameters. There are three hyper-
parameters to be set in our density selection step described
in Sect. 4.3 in the main paper. They are, the number of
nearest neighbors K for calculating the density, the number
of neighbors K¢, and the threshold 7" used when removing
redundant density peaks. We present the ablation study on
these parameters in Tabs. A4 to A6.

In Tab. A4, we vary the value of K. We can see that gen-
erally the performance of different K values results in an
inverse U shape. As K increases, the performance reaches
the best value, and after the performance peak, the perfor-
mance degrades as K increases further. When K is small,
the compared neighborhood is small, thus the estimation of
density peaks is not accurate. This results in many noisy
peaks that can lead worse performance. When K increases,
the density peak estimation is more accurate. However, con-
sidering the case where K equals to the number of images
in the dataset, we would underestimate the density peaks as
many clusters may be considered as one cluster. This would
result in a performance decrease when K is higher than bet-

https://bzhao.me/iNatIGCD

Dataset Used In # Classes / Stage # Stages # Avg. Images / Stage # Avg. Classes / Stage
ImageNet-1k NCDwWF [6] 882 /30 2 39k 30
TinyImageNet class-iNCD [10] 180 /20 2 20k 20
CIFAR100-MI GM [13] 70/10/10/10 4 5k 10
iNatIGCD Ours 3,888 /972/3,040/4,324 4 25k 2.7k

Table Al: The statistics of our dataset compared to previous benchmarks that focus on generalized category discovery under
the incremental setting. At Stage-1, 2, and 3, iNatIGCD contains 390, 2,625, and 1,492 novel classes respectively.

NR /KR | CIFAR-100 iNatIGCD-1
Myl Mgt | Myl Mgt
1 251 186 | 382 158
3 46 292 | 283 271
5 40 312 | 281 266
7 44 342 | 2711 279
10 34 361 | 240 294

Table A2: Impact of the size of the replay buffer R.

RN-18 ViT-B

30.0/20.1 29.1/24.8
27.6/28.4 29.4/30.2

My | /Myt CLIP-RN-50

GM[13] 28.4/25.6
Ours 25.4/34.2

Table A3: Performance of using CLIP pretrained features
on iNAT-IGCD-1 dataset.

ter choices.

K CIFAR-100 iNatIGCD-1
Mgl Mgt | Myl Mgt

5 48 27.1] 289 271
10| 43 289 279 269
15| 45 297 261 278
20| 41 281 | 259 276
40 | 38 264 | 272 260

Table A4: Ablation of K used in density-based selection.

In Tab. A5, we ablate the choice of K. This hyper-
parameter is used to remove redundant density peaks. When
the value of K% is low, it would remove fewer density
peaks as two peaks’ K¢ neighbor set are less likely to over-
lap. When the value is high, it would remove more density
peaks. From the results, we can see that setting K¢ to a
higher number than K (which equals 10 in Tab. AS5) can
result in better performance.

Another hyper-parameter in density selection is the
threshold 7'. Similar to the selection of K¢, a higher thresh-
old will remove fewer density peaks, while a lower thresh-
old will remove more. The results are presented in Tab. A6.
Our choice from the main paper is shaded in gray, which
obtains a good balance between forgetting and discovery.

K< | CIFAR-100 iNatIGCD-1
Mgl Mgt | Mgl Mg?

10 | 41 203| 280 189
15| 48 232 275 234
20 | 43 289 | 279 269
30 | 38 295| 271 279
40 | 45 281 | 269 272

Table AS: Ablation of K¢ used in density-based selection.

T CIFAR-100 iNatIGCD-1
Myl Mgt | Mgl Mg?

0.2 5.1 28.7 29.2 27.0
04 4.8 29.3 28.9 26.8
06| 43 289 | 279 269
0.8 4.0 27.2 27.1 26.0

Table A6: Ablation of 7" used in density-based selection.

B.2. Vision Transformer Results

In the main paper, our results are presented using a
ResNet-18 backbone. In Tabs. A7 and A8 we present re-
sults using a vision transformer [3] Base 16 model. We ob-
serve that the overall trend remains the same. The vision
transformer results in an increase in performance compared
to the ResNet-18 [5] that we use in the main paper, but at
the cost of being much slower to train.

B.3. CIFAR-100 IGCD-I and IGCD-u Results

In Tabs. A9 and A10, we re-purpose the CIFAR-100
dataset for the IGCD-1 and IGCD-u settings, using the same
category split as [13], and present the results comparing our
method with previous SoTA baselines. We can see that our
method, when compare with others, still achieves a com-
petitive performance. In terms of the overall performance
metrics My and Mg, our method achieves the best results
for both CIFAR-100-IGCD-1 and CIFAR-100-IGCD-u.

B.4. Results on Static GCD Datasets

In Tab. A11 we present results on the static GCD bench-
marks, i.e. without any incremental stages. For the adapta-
tion of our method to the static GCD scenario, we remove
the incremental update of S and R. We can see that our

Methods ‘ Stage-0 | Stage-1 ‘ Stage-2 ‘ Stage-3 ‘ Overall

| Al | Al Old New | Al Old New S-0 | Al Old New S-1 S0 | My My
SlmGCD +iCaRL [9] ‘ 45.6 252 336 141|247 380 169 97 |240 370 178 153 9.7 |359 269
GM [460 | 195 281 94 |209 296 112 162|183 271 168 170 143|291 248
Ours | 456 [27.0 363 167|268 372 234 185|250 381 197 182 17.1|294 30.2

Table A7: Vision transformer-backbone results on iNatIGCD in the IGCD-I setting (i.e. where labels are available at the end
of each stage). Higher numbers are better, with the exception of M, where lower is better.

Methods ‘ Stage-0 H Stage-1 ‘ Stage-2 ‘ Stage-3 ‘ Overall

‘ All ‘ New S-1 ‘ New S-1 S-0 ‘ New S-2 S-1 S0 ‘ My My
SimGCD + iCaRL [Y] 42.0 98 179 | 146 89 126 | 157 112 74 104 | 313 12.6
GM [13] 42.1 90 180 | 140 94 154 | 108 113 84 13.1 292 10.6
Ours ‘ 41.9 ‘ 12.8 225 ‘ 157 109 14.6 ‘ 16.3 115 9.0 13.6 ‘ 284 149

Table A8: Vision transformer-backbone results on iNatIGCD in the IGCD-u setting (i.e. where labels are not available at the
end of each stage). Higher numbers are better, with the exception of My, where lower is better.

proposed method still performs on par with previous SoTA
methods on static GCD benchmarks despite primarily being
designed for the incremental setting.

C. Implementation Details

C.1. Training Losses

We describe the representation learning losses L., be-
low which follows a contrastive learning framework. For-
mally, given two views (i.e. augmentations) &; and &; of an
input image x; in a mini-batch B, the self-supervised com-
ponent of the contrastive loss can be written as

> —log

i€B

exp (ﬁjig/m)

”ﬁn exp (2] 2, /7.) ’

6]

1
ESelfCon =
B]
where the embedding z = m(f(x)) is a projected feature
from a MLP projector m as in [2, 12], and 7, is a tem-
perature parameter. The supervised contrastive loss [7] is

similar with the difference being that the positive samples
are matched with their ground truth labels,

exp (ﬁiTiq/TC)

CSupCon =

Z|M| Z—log

1Rl
|B | ieBl

S e (2] 20/ 7e)

2)
where M indexes all other images in the same batch that
have the same label as x;, and 7. is the temperature param-
eter for the supervised contrastive loss.

For the fully supervised upper bound discussed in Tabs. 1
and 2 in the main paper, we leverage both contrastive learn-
ing losses Lseifcon and Lsypcon for representation learn-
ing. For the classifier, we simply adopt the cross-entropy
loss L. on all examples. We concatenate all datasets

D}, DL..1ap from every time step ¢, and provide the ground

25
26
27
28

truth category labels for the unlabelled datasets D!, , .. The
resulting concatenated dataset is used to train the fully su-
pervised baseline. So in this setting, the model will have
labels for all the categories and no forgetting occurs. This
can be considered as a very strong upper bound on the per-
formance for our IGCD setting.

nearest neig
= norm(feats)
normed_feats.t ()

K)

yhbors

get k
normed_feats
sims = normed_feats @
knn_indice = topk(sims,

density = sims[knn_indice].sum() /
nn_density = density[knn_indice]
peaks_ind = [i where density[i]

get density peaks

K
> nn_density[i]]
use iou on nns dedup
knn_ind = topk(sims, k=Kd)
peak_nns = knn_ind[peaks_ind]
selected_peaks = [peaks_ind[0]
for peak, nn in zip (peaks_ind[
flag = True
for other_nn in peak_nns.remove (nn) :
if TIoU(nn, other_nn) > thres:
flag = False
if flag:
selected_peaks.append (peak)

]
1:], peak_nns):

Listing 1: Pseudo-code of our density selection step.

C.2. Density Selection

We present the pseudo-code for our proposed density se-
lection process in Listing 1. We use /3-normed features to
calculate the density of the examples, and then filter out the
density peaks by comparing the density of one node to its k

Methods ‘ Stage-0 | Stage-1 ‘ Stage-2 ‘ Stage-3 ‘ Overall

| Al | Al Old New | Al Old New S-0 | Al Old New S-1 S0 | M; My
Supervised upper-bound | 79.2 | 825 803 853 | 81.0 824 80.0 792|813 823 802 81.7 802 - -
SimGCD + iCaRL [9] ‘ 77.8 ‘ 786 79.6 767|779 786 745 634756 789 708 602 501|277 678
GM [13] 790 | 783 788 773 | 782 789 747 663|767 778 712 632 498|292 683
Ours | 778 | 785 79.0 782|780 787 750 653|760 788 721 64.6 513|265 69.2

Table A9: Results on CIFAR-100 in the IGCD-I setting (i.e. where labels are available at the end of each stage). Higher
numbers are better, with the exception of My, where lower is better.

Methods | Stage-0 | Stage-1 | Stage-2 | Stage-3 | Overall

| Al [New SO |New S1 S0 |New S2 S1 S0 | My M,
Supervised upper-bound | 792 | 789 812|802 799 814|853 821 801 790 | - -
SimGCD + iCaRL [9] ‘ 77.8 624 432 ‘ 66.7 40.8 38.7 | 682 413 362 353|425 50.1
GM [13] 790 | 589 453 | 634 468 432 | 600 425 456 402 | 388 53.4
Ours | 778 | 644 469 | 67.8 47.0 421|680 400 468 415|363 55.9

Table A10: Results on CIFAR-100 in the IGCD-u setting (i.e. where labeled data is not provided during the incremental
stages). Higher numbers are better, with the exception of My, where lower is better.

Methods ImageNet-100 ‘ SCars

All Old New | Al Old New
GCD[11] 74.1 898 663 | 39.0 57.6 299
ORCA [1] 735 92,6 639 | 235 50.1 10.7
SimGCD [12] | 824 90.7 783 | 46.8 649 38.0
Ours \ 83.0 895 79.1 \ 472 638 38.7

Table A11: Results on static GCD benchmarks.

nearest neighbours. Then we compare each pair of density
peaks and remove peaks that have nearest neighbours set to
overlap with other peaks larger than a threshold.

C.3. Evaluation Metrics

The main results in each of the tables and figures are re-
ported using the clustering accuracy (ACC). At each evalua-
tion stage, given the ground truth y and a jpredicted label g,
the ACC is calculated as ACC = & M 1(y; = p(#:)).
Here, M = |D%| and p is the optimal permutation that
matches the predicted cluster assignments to the ground
truth category labels. Under the IGCD-I setting, we report
the ACC for all the categories in Stage-0 as all categories
have labeled training examples. For later stages, we report
the ‘All’, ‘Old’, and ‘New’ performance which correspond
to all categories, the labeled categories, and the unlabeled
categories at each stage. Additionally, we use S-¢ to denote
the categories that appear in a previous stage ¢ but are not
presented in the current stage to measure the forgetting of
the model. Finally, as noted in the main paper, we also use
the summary metrics defined in [13] to measure overall dis-
covery and forgetting performance, Mg and M.

C.4. Experimental Settings

Our models are trained using a stochastic gradient de-
scent optimizer with an initial learning rate of 0.1, momen-
tum of 0.9, and weight decay of 1le — 4. The learning rate
is decayed following a cosine schedule [8]. We use a batch
size of 128 during training for all datasets, where 64 images
are sampled from Dj,, and 64 images are sampled from
D! .- The balancing factor A, is set to 0.35, € is set to
2.0, K is set to 10, K¢ is set to 20, and the threshold 7T is
set to 0.6. We adopt the same set of augmentations used
in [4] for contrastive learning. The temperature parameters
in contrastive learning 7, and 7, are set to 0.07 and 0.1 re-

spectively.

References

[1] Kaidi Cao, Maria Brbi¢, and Jure Leskovec.
semi-supervised learning. In ICLR, 2022. 4

[2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In /ICML, 2020. 3

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021. 2

[4] Enrico Fini, Enver Sangineto, Stéphane Lathuiliere, Zhun
Zhong, Moin Nabi, and Elisa Ricci. A unified objective for
novel class discovery. In ICCV, 2021. 4

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 2

[6] KJ Joseph, Sujoy Paul, Gaurav Aggarwal, Soma Biswas,
Piyush Rai, Kai Han, and Vineeth N Balasubramanian.

Open-world

(7]

(8]

(9]

(10]

[11]

(12]

(13]

Novel class discovery without forgetting. In ECCV, 2022.
2

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,
Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and
Dilip Krishnan. Supervised contrastive learning. In NeurIPS,
2020. 3

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. In /ICLR, 2017. 4
Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. icarl: Incremental classifier
and representation learning. In CVPR, 2017. 3,4
Subhankar Roy, Mingxuan Liu, Zhun Zhong, Nicu Sebe, and
Elisa Ricci. Class-incremental novel class discovery. In
ECCV,2022. 2

Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisser-
man. Generalized category discovery. In CVPR, 2022. 4
Xin Wen, Bingchen Zhao, and Xiaojuan Qi. Parametric
classification for generalized category discovery: A baseline
study. In ICCV, 2023. 3,4

Xinwei Zhang, Jianwen Jiang, Yutong Feng, Zhi-Fan Wu,
Xibin Zhao, Hai Wan, Minggian Tang, Rong Jin, and Yue
Gao. Grow and merge: A unified framework for continuous
categories discovery. In NeurIPS, 2022. 2,3, 4

