
MVPSNet: Fast Generalizable Multi-view Photometric Stereo: Supplementary
Material

1. Overview
In this supplementary material, we will include the fol-

lowing contents:

• We describe more details about our sMVPS dataset
in Section 2 and show additional example images in
Figure 1 and Figure 2.

• We provide additional experiment details, including
notations we use for network architecture and imple-
mentation details in Section 3.

• We explain our mesh extraction pipeline in detail in
Section 4 together with the parameters we use.

• We provide the equations of the evaluation metrics
we use in Section 5.

• In the main paper, we provide L1 Chamfer distance
and F-score with L2 distance after ICP [3, 4, 5, 25].
Here in Section 6, we also provide results of L1
Chamfer distance and F-score with L2 distance be-
fore ICP in Table 1 and 2.

• Comparison between pretrained MVS models (Cas-
MVSNet [8] and TransMVSNet [6]) and the models
retrained on our sMVPS dataset in Table 3.

• We include additional qualitative results. We show the
global shape of reconstructed mesh from each method
under three different views in Figure 3 - 7. We also
show additional zoomed areas for visual comparison
between meshes in Figure 8.

2. sMVPS datasets
Object and Camera Positioning For both sMVPS-

sculpture and sMVPS-random datasets objects are placed at
the center of the world coordinate system with the object’s
up direction along the z-axis. Objects are scaled to be inside
a sphere of radius one. We use a pinhole camera for render-
ing with an FOV of 9.3◦, which is similar to the FOV used
to capture the DiLiGenT-MV dataset [18]. Camera posi-
tions are most easily described in spherical coordinates, i.e.
an azimuth angle, a polar angle, and a radial distance. The

azimuth angle for the ith camera is (18 + Xi)
◦ where Xi

is a uniform random number between -3 and 3, and i runs
from 0 to 19. The polar angle for each camera is sampled
uniformly from 62◦ - 64◦. The radial distance is sampled
uniformly between 14 and 16.5. This distance is chosen so
the object occupies the majority of the image.

Light Positioning Each view is rendered under 10 di-
rectional lights. The first light is always co-directional with
the camera while the other 9 are randomly sampled from the
spherical cap centered on the camera’s optical axis with an
angle of 45◦.

BRDF To generate BRDFs we follow [19]. Namely we
use the Cook-Torrance BRDF model with spatially-varying
albedo drawn from 415 free textures from [1], and randomly
generate roughness as described in [19]. Roughness is con-
stant in the case of sMVPS-sculpture and constant for each
primitive in the case of sMVPS-random.

Object Meshes For the sMVPS-random dataset objects
are drawn from the collections of random primitives gener-
ated by [23] using a 90-10 train/test split. For the sMVPS-
sculpture dataset we use the following meshes from [22] to
render the training set: nymphe-seated, standing-isis-priest,
the-slave-girl, thor, three-danish-polar-explorers, tiger-
devouring-a-gavial, two-wrestlers-in-combat,ugolino-and-
his-sons, virgin-and-child, woman-associated-with-the-
cult-of-isis, wounded-amazon, wounded-cupid, wrestling-
decimated-cleaned and the mesh virgin-mary-with-her-
dead-son for the test set.

Rendering Images are rendered with Mitsuba 2 using
the path-tracer integration method. We render at a resolu-
tion of 612x512 with 128 samples-per-pixel.

More Examples To further show the diversity on surface
shapes, textures and materials of our sMVPS dataset, we
provide additional example images of sMVPS-sculpture in
Figure 1 and sMVPS-random in Figure 2.

3. Additional experiment details

3.1. Notation in Figure 1 of main paper

The architecture of our network is illustrated in Figure 1
in the paper and we describe a few details and the notations
we use:



Figure 1. Additional example images of sMVPS-sculpture.

Figure 2. Additional example images of sMVPS-random.

ResBlk: Resnet block. It consists of conv2d(kernel=3) →
BatchNorm → ReLu → conv2d(kernel=3) → BatchNorm.
And the input of this block is added to the output of this
block as a residual connection [10].
Tconv: ConvTranspose2d layer in Pytorch with kernel=3.

3.2. Implementation details

Our model is implemented in Pytorch [21] and we use
a NVIDIA RTX A6000 GPU to train it. For input images,
we crop them to 512 × 512 and rescale the pixel values

to (0, 1). For each training sample, we use 3 views and
3 lightings. It is challenging to find correspondences for
view selection in textureless regions, so we simply take the
two adjacent views of a reference view as source views. To
make our model more robust to different lighting configu-
rations, we randomly sample 3 lightings and use the same
lightings for all views, resulting in 3 × 3 = 9 images for
each training sample. We use Adam [16] optimizer and set
betas as (0.9, 0.999). We trained 50 epochs in total. The
initial learning rate is 0.001 and it decays to half at steps [8,



12, 30, 40]. To get ground truth depth map of DiLiGenT-
MV [18], we render depth map from ground truth mesh and
camera parameters.

4. Mesh extraction pipeline
We use the same mesh extraction pipeline to recover 3D

mesh from predicted depth maps for all methods for a fair
comparison.

4.1. Depth filtering

We use two kinds of masks to filter predicted depth maps.
First, we employ 2D object masks to rule out background.
This is because our model is only trained on pixels within
an object. Second, we apply geometric filtering to only keep
depth predictions that are consistent across adjacent views.
For each object pixel in the reference view, pr, we have a
predicted depth aligned with this view dr. We lift pr to
a 3D point Pr and project Pr to a source view pixel ps.
Assume the predicted depth of source view at ps is ds. By
lifting ps using ds, we get a 3D point Ps. Projecting Ps

back to the reference view gives us a reprojected pixel p′r
and a depth d′r. We set thresholds for the distance between
the original pixel pr and the reprojected pixel p′r as well as
relative difference between dr and d′r as follows:

dist(pr, p
′
r) < 1, (1)

abs(dr − d′r)/dr < 0.01 (2)

For each pixel pr and its corresponding depth estimation dr,
we check this geometric consistency with each source view
and keep them only if the consistency holds for at least one
source view.

4.2. Depth fusion

After the depth filtering step, we combine each depth
map in a fusion step. For an object pixel pr, we simply
average over dr and all the estimations from source views
that are consistent with it, dsi for i = 1, ..., iN , where iN is
the total number of geometric consistent neighboring views,
and use this average as depth at pr. We then lift pr to a ver-
tex in point cloud and attach the predicted normal, nr, to it.
This way, we get point cloud utilizing information from all
views.

Note there are other possible depth fusion methods, e.g.
GIPUMA [7], some of which may achieve better fusion per-
formance for certain datasets. But there is no method that is
better for all datasets, so we leave exploration in this direc-
tion as a future work.

4.3. Surface reconstruction

We apply Screend Poisson Surface Reconstruction
(SPSR) [15] to recover mesh from point cloud. We

use same set of parameters for all methods and all ob-
jects. Specifically, we set reconstruction depth = 8,
minimum number of samples = 1.5 and
interpolation weight = 4. Note that before recov-
ering surfaces, an extra step of computing normal based
on the point cloud is needed for methods without normal
prediction, i.e., CasMVSNet [8] and TransMVSNet [6].

5. Evaluation metrics details
We use L1 Chamfer distance (mm) and F-socre with L2

distance (threshold at 1mm) to evaluate the quality of the
reconstructed mesh. Both metrics are applied to two sets of
3D points, which are vertices of the reconstructed mesh and
the ground truth mesh.

Give two point sets, R and G, L1 Chamfer distance is
defined as follows:

CD(R,G) = 1

|R|
∑
x∈R

min
y∈G

∥x− y∥+ 1

|G|
∑
y∈G

min
x∈R

∥x− y∥.

(3)

We use the F-score similarly defined as [17]. For a re-
constructed point r ∈ R, its L2 distance to the ground truth
mesh G is

er→G = min
g∈G

∥r − g∥2, (4)

and for a ground truth point g ∈ G, its distance to the recon-
structed mesh is defined as:

eg→R = min
r∈R

∥r − g∥2, (5)

The precision and recall for a threshold d are:

P (d) =
1

|R|
∑
r∈R

[er→G < d] (6)

R(d) =
1

|G|
∑
g∈G

[eg→R < d] (7)

F-score is the harmonic mean of precision and recall as
a summary measure:

F (d) =
2P (d)R(d)

P (d) +R(d)
(8)

6. Additional results without ICPs
In the paper, we report results after ICP [3,4,5,25], which

is an extra registration step we applied to all meshes after
being reconstructed. It is initially aimed to fairly compare
our mesh with others as several methods indicate that they
did registration after extracting meshes [14, 18]. We find it
helpful to improve accuracy of several methods, even for
some of those that already have registration applied. Since



there is no standard way to do registration among existing
methods, we applied ICP to meshes from all methods, re-
gardless of whether they have done registration or not.

For a complete comparison, we also provide the quanti-
tative results of L1 Chamfer distance and F-score with L2
distance (threshold at 1mm) without ICP [3, 4, 5, 25] in Ta-
ble 1 and Table 2, respectively. They show that even without
registration, our method can still perform comparably with
state-of-the-art methods with registration.

7. Effectiveness of sMVPS dataset
We provide L1 Chamfer distance in mm and F-score with

L2 distance (threshold at 1mm) of pretrained CasMVSNet
[8] and TransMVSNet [6] together with the models trained
using our sMVPS dataset in Table 3, which further demon-
strates the effectiveness of the proposed sMVPS dataset.
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Per-scene optimization Generalizable
Category Manual Effort Standalone Single-view PS MVS MVPS
Method PJ16

[20]
LZ20
[18]

BKW22
[14]

BKC22
[12]

PS-NeRF
[24]

PS-Transformer [11] CasMVSNet [9]- RT Ours

BEAR 2.63 0.74 1.03 1.09 0.81 3.25 1.38 0.91
BUDDHA 1.18 0.99 2.44 1.19 0.98 4.44 1.30 1.12
COW 1.16 0.39 1.08 0.86 0.78 2.67 1.26 0.80
POT2 3.27 0.69 1.32 1.32 0.81 2.92 1.43 0.94
READING 1.49 0.74 1.94 0.93 0.98 3.69 0.83 0.76
AVERAGE 1.95 0.71 1.56 1.08 0.87 3.39 1.24 0.91

Table 1. L1 Chamfer Distance in mm (lower is better) between reconstructed mesh and GT without ICP. ‘-RT’ denotes trained on our
synthetic MVPS dataset. For non-manual methods, the best result is shown in bold, 2nd best as underline. LZ20 & PJ16 involve carefully
crafted steps, manual efforts in finding correspondence, and an initial mesh or point cloud.

Per-scene optimization Generalizable
Category Manual Effort Standalone Single-view PS MVS MVPS
Method PJ16

[20]
LZ20
[18]

BKW22
[14]

BKC22
[12]

BKW23*
[13]

PS-NeRF
[24]

PS-
Transformer [11]

CasMVSNet
[9]-RT

Ours

BEAR 0.504 0.987 0.926 0.895 0.965 0.994 0.496 0.902 0.990
BUDDHA 0.935 0.935 0.745 0.922 0.993 0.970 0.387 0.913 0.953
COW 0.917 0.990 0.943 0.981 0.987 0.984 0.617 0.896 0.993
POT2 0.459 0.985 0.929 0.909 0.991 0.990 0.609 0.891 0.992
READING 0.868 0.975 0.807 0.970 0.975 0.946 0.501 0.981 0.989
AVERAGE 0.737 0.974 0.870 0.935 0.982 0.977 0.522 0.917 0.983

Table 2. F-score on L2 distance (higher is better) between reconstructed mesh and GT without ICP. ‘-RT’ denotes trained on our synthetic
MVPS dataset. For non-manual methods, the best result is shown in bold, 2nd best as underline. LZ20 & PJ16 involve carefully crafted
steps, manual efforts in finding correspondence, and an initial mesh or point cloud. BKW23* code not available, result from the paper.
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Metrics L1 Chamfer distance F-score (1mm)
Method CasMVSNet

[8]
CasMVSNet-

RT
TransMVSNet

[6]
TransMVSNet-

RT
Ours CasMVSNet

[8]
CasMVSNet-

RT
TransMVSNet

[6]
TransMVSNet-

RT
Ours

BEAR 2.00 1.47 1.02 1.48 0.80 0.789 0.911 0.962 0.882 0.991
BUDDHA 1.44 1.26 1.09 1.10 1.07 0.878 0.919 0.961 0.963 0.958

COW 2.73 1.27 1.15 1.05 0.77 0.658 0.914 0.927 0.941 0.993
POT2 1.89 1.46 1.10 1.05 0.82 0.799 0.901 0.956 0.964 0.994

READING 1.07 0.75 0.87 0.76 0.66 0.941 0.980 0.971 0.978 0.988
AVERAGE 1.83 1.24 1.05 1.09 0.82 0.813 0.925 0.955 0.946 0.985

Recon.
Time/object

22s 22s 52s 52s 105s 22s 22s 52s 52s 105s

Table 3. Results of CasMVSNet and TransMVSNet on L1 Chamfer distance in mm and F-score with L2 distance (threshold at 1mm) after
ICP. CasMVSNet [8] and TransMVSNet [6] denote the pretrained models on DTU dataset [2]. ’RT’ denotes trained on our synthetic MVPS
dataset.

PS-NeRF CasMVSNet Ours (w/o normal loss) Ours GTBKC22

12 hours 22 seconds 103 seconds 105 secondsFew hours

Figure 3. Reconstruction of BEAR under three different views (left-side, front, right-side) in DiLiGenT-MV [18]. Last row is reconstruction
time.



PS-NeRF CasMVSNet Ours (w/o normal loss) Ours GTBKC22

12 hours 22 seconds 103 seconds 105 secondsFew hours

Figure 4. Reconstruction of BUDDHA under three different views (left-side, front, right-side) in DiLiGenT-MV [18]. Last row is recon-
struction time.



PS-NeRF CasMVSNet Ours (w/o normal loss) Ours GTBKC22

12 hours 22 seconds 103 seconds 105 secondsFew hours

Figure 5. Reconstruction of COW under three different views (front, right-side, back) in DiLiGenT-MV [18]. Last row is reconstruction
time.

PS-NeRF CasMVSNet Ours (w/o normal loss) Ours GTBKC22

12 hours 22 seconds 103 seconds 105 secondsFew hours

Figure 6. Reconstruction of POT2 under three different views (left-side, front, right-side) in DiLiGenT-MV [18]. Last row is reconstruction
time.



PS-NeRF CasMVSNet Ours (w/o normal loss) Ours GTBKC22

12 hours 22 seconds 103 seconds 105 secondsFew hours

Figure 7. Reconstruction of READING under three different views (front, right-side, right) in DiLiGenT-MV [18]. Last row is reconstruc-
tion time.
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Sample Image PS-NeRF CasMVSNet Ours (w/o normal loss) Ours GTBKC22

Figure 8. Zoomed-in areas on meshes from all methods. We observe that in general PS-NeRF [24] provides meshes with find details while
it often contains iso-contour pattern artifacts. Our method can provide smooth meshes with correct global shapes even though it takes very
short time compared with other methods.


