
Appendix
A. Further Illustration of Position-aware Dy-

namic Convs

We have described the bounding box and centerness-
based positional encoding in the paper. Here, we provide
the pseudo-code of dynamic convs with the two kinds of PE
in Algorithm 1.

Algorithm 1 Position-aware Dynamic Convs (PyTorch)

q: proposal featrues, (N, c)
r: roi features, (N, 7 * 7, c)
b: proposal boxes(x, y, w, h), (N, 4)
m: centerness, (7 * 7)
pe_i: PE of image coordinates, (N, 7 * 7, c)

def PositionAwareDynamicConvs(q, r, b, pe_i, m):
kernels of two 1x1 conv layers
params = dynamic_layer(q)
k = params[:, :c*d].view(N, c, d)
v = params[:, c*d:].view(N, d, c)

encode box center (x, y) into PE vector
center, w, h = b[:, :2], b[:, 2], b[:, 3]
qc = mlp_c(q) # center transformation
qs = mlp_s(q) # w_ref, h_ref
pe = sinusoidal(center)
pe = pe * qc
pe[:, :c/2] = qs[:, 0] / w * pe[:, :c/2]
pe[:, c/2:] = qs[:, 1] / h * pe[:, c/2:]

modulate r and PE by centerness
pe_i = pe_i * m.flatten()[None, :, None]
pe = pe.view(N, 1, c) * m.flatten()[None, :,

None]

concate (r, pe_img) and (k, pe)
r = torch.cat([r, pe_i], dim=-1)
k = k.unsqueeze(1).repeat(1, 7*7, 1, 1)
pe = pe.unsqueeze(-1).repeat(1, 1, 1, d)
k = torch.cat([k, pe], dim=2)

interaction between r and q
r = relu(norm(torch.matmul(r.unsqueeze(-2), k)

.squeeze(-2)))
r = relu(norm(bmm(r, v)))

reduce spatial dimension to obtain object
features o

r = r.flatten(1)
o = out_layer(r)

return o

Two conv kernels are generated from the proposal fea-
ture first. Then we map the proposal feature to two vectors
in geometry space. One of them is qc ∈ Rc, the another is
qs ∈ R2, consisting of two scaler wref and href . Then they
work together to modulate the sinusoidal embedding from
box center (x, y) as Eq.(5).

The centerness-based PE is built on the bounding box PE
to vary local positions within a proposal box. We also list
it in Algorithm 1. The single channel mask is generated as
Eq.(6), and it is shown in Fig. 1(a). It is the same for all pro-
posal boxes. We try two strategies to enhance it. First, we

make the centerness-based mask trainable, initialized with
Fig. 1(a). Second, as different objects have different shapes
and semantic centers, we predict the semantic center coor-
dinate. The largest value of centerness mask is at the pre-
dicted semantic center as Fig. 1(b). However, the static one
in Fig. 1(a) gives the best results.

 (a) Static (b) Adjust

Figure 1. Different forms of centerness-based PE.

B. Effect of Number of Stages
We provide the effectiveness of the number of stages

on Sparse R-CNN and RecursiveDet in Fig.4 in the paper.
It shows our model gains better results on any number of
stages. We further present the comparisons on AdaMixer
and DiffusionDet in Fig. 2 and Fig. 3. Except for the first
stage in DiffusionDet, ReursiveDet behaves better than its
counterpart.

Fig. 4 gives the visualization of predicted boxes from
cascade structure Sparse R-CNN and recursive structure
RecursiveDet. It shows that both methods detect objects
progressively, and the recursive structure even gets a bet-
ter final result than Sparse R-CNN. Similar phenomenon is
illustrated in Fig. 5 and Fig. 6.

1 2 3 4 5 6
number of stages

20

25

30

35

40

45

CO
CO

 A
P

21.3

36.9

43.2

46.1
46.8 46.8

22.6

40.4

45.7
47.2 47.7 48.0

AdaMixer
RecursiveDet(AdaMixer)

Figure 2. Effect of the number of stages in AdaMixer and Recur-
siveDet.

C. Results on CrowdHuman
CrowdHuman [7] dataset is a highly crowd pedestrian

benchmark with only one class. There are about 23 per-
sons per image on average and many overlaps. We only use

1 2 3 4 5 6
number of stages

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5
CO

CO
 A

P

29.1

41.1

44.2
45.2 45.6 45.8

30.0

42.6

46.1
47.0 47.1 47.1

DiffusionDet
RecursiveDet(DiffusionDet)

Figure 3. Effect of the number of stages in DiffusionDet and Re-
cursiveDet.

the full-body bounding box to train models. The standard
Caltech[2] evaluation metric, Average Precision (AP) and
Recall are reported. We train the model for 50 epochs, and
dividing the learning rate by 10 at 40th epoch. The results
are listed in Tab. 1. It shows that Sparse R-CNN is already
better than other well established detectors, like RetinaNet
and AdaptiveNMS. It also behaves better than DETR-series.
Our enhanced version achieves 91.9 AP, gains 1.1 AP from
Sparse R-CNN. The other two metric mMR and Recall are
also better than it.

Method Queries NMS AP ↑ mMR ↓ Recall ↑
Faster R-CNN [6] - ✓ 85.0 50.4 90.2

RetinaNet [4] - ✓ 81.7 57.6 88.6
FCOS [9] - ✓ 86.1 55.2 94.3

AdaptiveNMS [5] - ✓ 84.7 49.7 91.3
DETR [1] 100 ◦ 66.1 80.6 -

Deformable DETR [10] 400 ◦ 86.7 54.0 92.5
PETR [3] 1000 ◦ 89.5 45.6 94.0

Sparse R-CNN[8] 500 ◦ 90.7 44.7 81.4

RecursiveDet 500 ◦ 91.8 43.3 96.7
Table 1. Performance comparisons with other detectors on Crowd-
Human. Our RecursiveDet is built on Sparse R-CNN.

References
[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part I 16, pages 213–229.
Springer, 2020.

[2] Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Per-
ona. Pedestrian detection: An evaluation of the state of the
art. IEEE transactions on pattern analysis and machine in-
telligence, 34(4):743–761, 2011.

[3] Matthieu Lin, Chuming Li, Xingyuan Bu, Ming Sun,
Chen Lin, Junjie Yan, Wanli Ouyang, and Zhidong Deng.
Detr for crowd pedestrian detection. arXiv preprint
arXiv:2012.06785, 2020.

[4] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017.

[5] Songtao Liu, Di Huang, and Yunhong Wang. Adaptive nms:
Refining pedestrian detection in a crowd. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 6459–6468, 2019.

[6] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015.

[7] Shuai Shao, Zijian Zhao, Boxun Li, Tete Xiao, Gang Yu,
Xiangyu Zhang, and Jian Sun. Crowdhuman: A bench-
mark for detecting human in a crowd. arXiv preprint
arXiv:1805.00123, 2018.

[8] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chen-
feng Xu, Wei Zhan, Masayoshi Tomizuka, Lei Li, Zehuan
Yuan, Changhu Wang, et al. Sparse r-cnn: End-to-end ob-
ject detection with learnable proposals. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 14454–14463, 2021.

[9] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos:
Fully convolutional one-stage object detection. In Proceed-
ings of the IEEE/CVF international conference on computer
vision, pages 9627–9636, 2019.

[10] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020.

GT Sparse R-CNN RecursiveDet

Stage-0

Stage-1

Stage-2

Stage-3

Stage-4

Stage-5

Figure 4. Predictions of each stage in Sparse R-CNN and RecursiveDet. Boxes with classification score above 0.5 are showed.

GT Sparse R-CNN RecursiveDet

Stage-0

Stage-1

Stage-2

Stage-3

Stage-4

Stage-5

Figure 5. Predictions of each stage in Sparse R-CNN and RecursiveDet. Boxes with classification score above 0.5 are showed.

GT Sparse R-CNN RecursiveDet

Stage-0

Stage-1

Stage-2

Stage-3

Stage-4

Stage-5

Figure 6. Predictions of each stage in Sparse R-CNN and RecursiveDet. Boxes with classification score above 0.5 are showed.

