
Appendix
A. Further Illustration of Position-aware Dy-

namic Convs

We have described the bounding box and centerness-
based positional encoding in the paper. Here, we provide
the pseudo-code of dynamic convs with the two kinds of PE
in Algorithm 1.

Algorithm 1 Position-aware Dynamic Convs (PyTorch)

# q: proposal featrues, (N, c)
# r: roi features, (N, 7 * 7, c)
# b: proposal boxes(x, y, w, h), (N, 4)
# m: centerness, (7 * 7)
# pe_i: PE of image coordinates, (N, 7 * 7, c)

def PositionAwareDynamicConvs(q, r, b, pe_i, m):
# kernels of two 1x1 conv layers
params = dynamic_layer(q)
k = params[:, :c*d].view(N, c, d)
v = params[:, c*d:].view(N, d, c)

# encode box center (x, y) into PE vector
center, w, h = b[:, :2], b[:, 2], b[:, 3]
qc = mlp_c(q) # center transformation
qs = mlp_s(q) # w_ref, h_ref
pe = sinusoidal(center)
pe = pe * qc
pe[:, :c/2] = qs[:, 0] / w * pe[:, :c/2]
pe[:, c/2:] = qs[:, 1] / h * pe[:, c/2:]

# modulate r and PE by centerness
pe_i = pe_i * m.flatten()[None, :, None]
pe = pe.view(N, 1, c) * m.flatten()[None, :,

None]

# concate (r, pe_img) and (k, pe)
r = torch.cat([r, pe_i], dim=-1)
k = k.unsqueeze(1).repeat(1, 7*7, 1, 1)
pe = pe.unsqueeze(-1).repeat(1, 1, 1, d)
k = torch.cat([k, pe], dim=2)

# interaction between r and q
r = relu(norm(torch.matmul(r.unsqueeze(-2), k)

.squeeze(-2)))
r = relu(norm(bmm(r, v)))

# reduce spatial dimension to obtain object
features o

r = r.flatten(1)
o = out_layer(r)

return o

Two conv kernels are generated from the proposal fea-
ture first. Then we map the proposal feature to two vectors
in geometry space. One of them is qc ∈ Rc, the another is
qs ∈ R2, consisting of two scaler wref and href . Then they
work together to modulate the sinusoidal embedding from
box center (x, y) as Eq.(5).

The centerness-based PE is built on the bounding box PE
to vary local positions within a proposal box. We also list
it in Algorithm 1. The single channel mask is generated as
Eq.(6), and it is shown in Fig. 1(a). It is the same for all pro-
posal boxes. We try two strategies to enhance it. First, we

make the centerness-based mask trainable, initialized with
Fig. 1(a). Second, as different objects have different shapes
and semantic centers, we predict the semantic center coor-
dinate. The largest value of centerness mask is at the pre-
dicted semantic center as Fig. 1(b). However, the static one
in Fig. 1(a) gives the best results.

 (a) Static  (b) Adjust 

Figure 1. Different forms of centerness-based PE.

B. Effect of Number of Stages
We provide the effectiveness of the number of stages

on Sparse R-CNN and RecursiveDet in Fig.4 in the paper.
It shows our model gains better results on any number of
stages. We further present the comparisons on AdaMixer
and DiffusionDet in Fig. 2 and Fig. 3. Except for the first
stage in DiffusionDet, ReursiveDet behaves better than its
counterpart.

Fig. 4 gives the visualization of predicted boxes from
cascade structure Sparse R-CNN and recursive structure
RecursiveDet. It shows that both methods detect objects
progressively, and the recursive structure even gets a bet-
ter final result than Sparse R-CNN. Similar phenomenon is
illustrated in Fig. 5 and Fig. 6.
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Figure 2. Effect of the number of stages in AdaMixer and Recur-
siveDet.

C. Results on CrowdHuman
CrowdHuman [7] dataset is a highly crowd pedestrian

benchmark with only one class. There are about 23 per-
sons per image on average and many overlaps. We only use
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Figure 3. Effect of the number of stages in DiffusionDet and Re-
cursiveDet.

the full-body bounding box to train models. The standard
Caltech[2] evaluation metric, Average Precision (AP) and
Recall are reported. We train the model for 50 epochs, and
dividing the learning rate by 10 at 40th epoch. The results
are listed in Tab. 1. It shows that Sparse R-CNN is already
better than other well established detectors, like RetinaNet
and AdaptiveNMS. It also behaves better than DETR-series.
Our enhanced version achieves 91.9 AP, gains 1.1 AP from
Sparse R-CNN. The other two metric mMR and Recall are
also better than it.

Method Queries NMS AP ↑ mMR ↓ Recall ↑
Faster R-CNN [6] - ✓ 85.0 50.4 90.2

RetinaNet [4] - ✓ 81.7 57.6 88.6
FCOS [9] - ✓ 86.1 55.2 94.3

AdaptiveNMS [5] - ✓ 84.7 49.7 91.3
DETR [1] 100 ◦ 66.1 80.6 -

Deformable DETR [10] 400 ◦ 86.7 54.0 92.5
PETR [3] 1000 ◦ 89.5 45.6 94.0

Sparse R-CNN[8] 500 ◦ 90.7 44.7 81.4

RecursiveDet 500 ◦ 91.8 43.3 96.7
Table 1. Performance comparisons with other detectors on Crowd-
Human. Our RecursiveDet is built on Sparse R-CNN.
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Figure 4. Predictions of each stage in Sparse R-CNN and RecursiveDet. Boxes with classification score above 0.5 are showed.
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Figure 5. Predictions of each stage in Sparse R-CNN and RecursiveDet. Boxes with classification score above 0.5 are showed.
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Figure 6. Predictions of each stage in Sparse R-CNN and RecursiveDet. Boxes with classification score above 0.5 are showed.


