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1. Implementation Details

1.1. Architecture

Vision and language model (VLM): We adopt the pre-
trained CLIP [23] and LiT [32], which both provide open-
source implementations and pre-trained checkpoints. We
experiment with CLIP backbones of ViT-B/32, ViT-B/16,
and ViT-L/14, and LiT backbones of ViT-B/32, R26+B/1,
and ViT-H/14. These backbones follow the nomenclature
from [3] for model size, patch size, and Transformer vs.
hybrid architectures. For example, B/32 refers to ViT-
Base with patch size 32, while R26+B/1 refers to a hybrid
ResNet-26 plus ViT-Base with stride 1. We use the pre-
trained CLIP weights provided by the original paper and
obtain the pre-trained LiT weights from OWL-ViT [21].

Object detector: To adapt VLMs for object detection, we
remove token pooling and add detection heads, which con-
tain one linear layer for producing classification embed-
dings and the other two-layer feed-forward network for box
prediction. Following the design of OWL-ViT [21], we add
a bias to the predicted box coordinates so that each box is
by default centered on the image patch that corresponds to
the token from which this box is predicted when arranging
the token sequence as a 2D grid. Although the stochastic
depth regularisation [10] (i.e., droplayer) is not applied dur-
ing VLM pre-training, we add it to image encoders during
fine-tuning, which reduces model overfitting. In addition,
we merge the class token into other feature map tokens by
multiplying it with them, and append layer norm to the out-
put of CLIP models, following the practice in [21].

Relationship decoder: We use Perceiver Resampler pro-
posed in Flamingo [1] as our decoder backbone. It contains
three Transformer layers with eight attention heads. Note
that we employ ReLU instead of Squared ReLU used in
Flamingo to simplify the design. We set the number of input
relation queries to 100 for all datasets. Each Transformer
layer is implemented following the post-normalization de-

sign [27], which requires a linear warm-up learning rate
schedule (1, 000 warm-up steps) for model training.

1.2. Training Object Detector

We list the hyper-parameters used for training our object
detector in Table 1. Its training procedure follows [21], ex-
cept that we make two major modifications. First, we freeze
the text encoder of a pre-trained VLM. This is because we
would like to keep the embedding space of a pre-trained text
encoder so that its discriminative capability is still sufficient
for encoding relationship triplets, preventing it from forget-
ting issues. Second, we apply the stochastic depth regular-
isation [10] (i.e., droplayer) to image encoders when using
LiT [32] as the pre-trained VLM; otherwise, performance
drops will be observed. When training CLIP models, we
mix the COCO [18], Objects365 [24], HICO-DET [2], and
Visual Genome [14] datasets randomly in each batch with
probabilities of 0.1, 0.5, 0.2, and 0.2, respectively; when
training LiT models, we use probabilities of 0.1, 0.7, 0.1,
and 0.1, respectively. This is due to the fact that LiT mod-
els suffer from overfitting if a larger probability is applied
to HICO-DET or Visual Genome.

1.3. Training Relationship Decoder

In the experiments, we introduce two configurations for
training our relationship decoders: dataset-specific mod-
els and unified models. They use different training setups
which are shown in Table 2.

Dataset-specific models: To reduce model overfitting, we
fix both the text encoder and object detector when training
dataset-specific models. We train all models in this configu-
ration with 140, 000 steps, the learning rate of 1×10−4, and
batch size 64. When training dataset-specific models on the
V-COCO dataset, we observe serious overfitting problems
as its training set is extremely small (less than 5, 000 im-
ages). Therefore, we early stop the model training, where
we use at most 20, 000 training steps, while keeping other
hyper-parameters unchanged.



Model Backbone # of steps Batch size Learning rate Droplayer rate Image size Dataset proportions Frozen text

UniVRD (CLIP) ViT-B/32 140, 000 256 5× 10−5 0.2 768 0.1/0.5/0.2/0.2 3
UniVRD (CLIP) ViT-B/16 140, 000 256 5× 10−5 0.2 768 0.1/0.5/0.2/0.2 3
UniVRD (CLIP) ViT-L/14 70, 000 256 2× 10−5 0.2 672 0.1/0.5/0.2/0.2 3

UniVRD (LiT) ViT-B/32 140, 000 256 2× 10−4 0.2 768 0.1/0.7/0.1/0.1 3
UniVRD (LiT) R26+B/1 140, 000 256 2× 10−4 0.2 768 0.1/0.7/0.1/0.1 3
UniVRD (LiT) ViT-H/14 70, 000 256 5× 10−5 0.2 480 0.1/0.7/0.1/0.1 3

Table 1. List of hyper-parameters used for training our object detector. The mix probabilities of the COCO [18], Objects365 [24],
HICO-DET [2], and Visual Genome [14] datasets within each batch are shown in dataset proportions. Note that we only apply stochastic
depth regularisation [10] (i.e., droplayer) to image encoders, as text encoders are frozen.

Model Backbone # of steps Batch size Learning rate Droplayer rate Image size Dataset proportions Frozen text

Dataset-specific models
UniVRD (CLIP) ViT-B/32 140, 000 64 1× 10−4 0.0 768 - 3
UniVRD (CLIP) ViT-B/16 140, 000 64 1× 10−4 0.0 768 - 3
UniVRD (CLIP) ViT-L/14 140, 000 64 1× 10−4 0.0 672 - 3
Unified models
UniVRD (CLIP) ViT-B/32 140, 000 256 1× 10−4/2× 10−6 0.2 768 0.5/0.1/0.4 7
UniVRD (CLIP) ViT-B/16 140, 000 256 1× 10−4/2× 10−6 0.2 768 0.5/0.1/0.4 7
UniVRD (CLIP) ViT-L/14 140, 000 256 1× 10−4/2× 10−6 0.2 672 0.5/0.1/0.4 7

Table 2. List of hyper-parameters used for training our visual relationship decoder. Where two numbers are given for the learning rate,
the first is for the visual relationship decoder and the second for the rest of the whole model. The mix probabilities of the HICO-DET [2],
V-COCO [8], and Visual Genome [14] datasets within each batch are shown in dataset proportions. Note that we only apply stochastic
depth regularisation [10] (i.e., droplayer) to image encoders.

Unified models: When training unified models, we mix
HICO-DET, V-COCO, and Visual Genome randomly in
each batch with probabilities of 0.5, 0.1, and 0.4, respec-
tively. We find that further increasing the mix ratio of train-
ing data from Visual Genome will lead to model overfitting
on this dataset. We enlarge the batch size to 256 and set the
learning rate of both the text encoder and object detector to
2 × 10−6. We have also tried the same optimization setup
for training dataset-specific models, but it will lead to per-
formance drops. This suggests the benefits of enlarging the
batch size and unfreezing pre-trained models when we train
unified models across multiple datasets.

2. Additional Results
2.1. Mosaics Image Augmentation

Table 3 shows our results on HICO-DET [2] when dif-
ferent mosaics configurations are employed for training the
visual relationship decoder. To highlight the performance
differences, we report the results without using per-class
PNMS. We can find that using only 1 × 1 single images
is clearly worse than including larger mosaics (i.e., smaller
mosaic tiles), and the model achieves the best performance
with the inclusion of 3× 3 mosaics.

2.2. Ablation on Training Unified Models

We identify the top three important factors affecting the
performance of our unified models in Table 4. We can find

Mosaics ratio Default (%)

1× 1 2× 2 3× 3 mAPF mAPR mAPN

1.0 0.0 0.0 25.84 20.09 27.56
0.6 0.4 0.0 27.06 19.66 29.27
0.4 0.3 0.3 27.92 20.98 30.00

Table 3. Performance comparison when different mosaics ra-
tios are utilized for image augmentation. We report the results
of UniVRD (CLIP) using the ViT-B/32 backbone on the HICO-
DET test set without performing per-class PNMS.

Ablation mAPF

Unified baseline 29.47

(1) Use one-stage training schedule −4.97
(2) Freeze the object detector in the second stage −1.21
(3) Freeze the text encoder in the second stage −0.83

Table 4. Ablation study of the main methodological improve-
ments for training unified models. For simplicity, difference in
mAP to the unified baseline is shown. All ablations are carried out
for the UniVRD (CLIP: ViT-B/32) model on HICO-DET.

that using a cascade training paradigm still leads to a sub-
stantial performance boost, which is consistent with our ob-
servations on training dataset-specific models. In contrast,
freezing either the object detector or the text encoder when
training the relationship decoder causes performance drops.



Method HOTR QPIC UniVRD

HICO-DET (mAPF) 25.1 29.1 29.7
Visual Genome (mR@50) 9.4 - 9.6

Table 5. Results with the ResNet-50 backbone on HICO-DET
and VG. Our model is initialized from CLIP [23].

This is because of the fact that our proposed unified VRD
framework makes it possible for us to train models with a
larger amount of data across multiple datasets at the same
time, mitigating the model overfitting issue. Hence, we are
able to train models with larger learning capabilities (with
more model parameters to be fine-tuned).

2.3. Results with Different Backbones

To conduct a fair comparison on the backbone, we show
results of different models using the same ResNet-50 back-
bone in Table 5. We can observe that our method achieves
competitive performances on both HICO-DET and VG.

2.4. HOI Detection on V-COCO

In this section, we provide additional results on the V-
COCO dataset [8]. The metric of role AP is used for eval-
uation: a detection is correct if the location of the agent
(i.e., both subjects and objects) and each role (i.e., predicate
classes) is correct (correctness is measured using bounding
box overlap as is standard). In V-COCO, there are a number
of HOI categories which are defined with no object labels.
To deal with this situation, we evaluate the model perfor-
mance in two different scenarios following the official eval-
uation scheme of V-COCO. In Scenario 1 (APS#1

role), detec-
tors are required to report cases in which there is no object,
while in Scenario 2 (APS#2

role), we just ignore the prediction
of an object bounding box in these cases.

To deal with the long-tail class distribution in V-COCO,
we use the dynamic re-weighting [33] during model train-
ing. To handle HOI categories which do not contain ob-
jects, we conduct the following modifications to let them
be compatible with the proposed framework. First, for each
sample, their subject annotations are employed as pseudo
ground-truth objects to be predicted by our model. Second,
we use the prompt template ‘a 〈subject〉 〈predicate〉-ing’ for
HOI categories including transitive verbs and the prompt
template ‘a 〈subject〉 〈predicate〉-ing something’ for those
containing intransitive verbs.

We compared the proposed method with both bottom-up
and single-stage methods. As illustrated in Table 6, we can
find that (1) we are able to achieve the state-of-the-art per-
formance; (2) our model outperforms other bottom-up ap-
proaches by a significant margin; (3) further improvements
can be obtained when we scale up the model. These obser-
vations are consistent with our results on HICO-DET, which
re-confirm the effectiveness of the proposed method.

Model Extra-sup. APS#1
role APS#2

role

Single-stage methods
UnionDet [11] 7 47.5 56.2
HOI-Transformer [36] 7 52.9 -
GGNet [35] 7 54.7 -
HOTR [12] 7 55.2 64.4
DIRV [4] 7 56.1 -
QPIC [25] 7 58.8 61.0
CDN [33] 7 61.7 63.8
RLIP [31] VG† 61.9 64.2
GEN-VLKT [17] CLIP† 62.4 64.5

Bottom-up methods
InteractNet [7] 7 40.0 -
GPNN [22] 7 44.0 -
iCAN [6] 7 45.3 52.4
TIN [16] 7 47.8 54.2
VCL [9] 7 48.3 -
DRG [5] Text [20] 51.0 -
IP-Net [30] 7 51.0 -
VSGNet [26] 7 51.8 57.0
PMFNet [28] Pose [18] 52.0 -
PD-Net [34] Text [20] 52.6 -
CHGNet [29] 7 52.7 -
FCMNet [19] Text [20] 53.1 -
ACP [13] Text [20] 53.2 -
IDN [15] 7 53.3 60.3
UniVRD (CLIP: ViT-B/32) CLIP† 59.9 62.7
UniVRD (CLIP: ViT-B/16) CLIP† 62.3 64.8
UniVRD (CLIP: ViT-L/14) CLIP† 65.1 66.3
UniVRD (LiT: ViT-B/32) LiT† 59.4 62.2
UniVRD (LiT: R26+B/1) LiT† 62.6 65.1
UniVRD (LiT: ViT-H/14) LiT† 65.8 66.9

Table 6. System-level comparison on V-COCO. † denotes train-
ing supervisions obtained from the model pre-training stage. Best
performances are highlighted in bold.
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