
Supplementary materials

1. Accessing efficiency of the BSMC and CSR
format

To evaluate the accessing efficiency of a compression
format, we consider two operations. (1) Given an element
or a block in the compressed structure, find its column and
row identities in the full matrix; (2) Given the column and
row identities of an element or a block in the full matrix,
find the corresponding block in the compressed structure.

1.1. The first operation

Given the ID of an element in the first array of the CSR
structure, the column ID in the full matrix can be identi-
fied immediately by the second array as shown in Figure 1
(left). If the elements are continuously accessed, the row ID
in the full matrix can be obtained by row counting. Other-
wise, the row ID must be interpolated from the third array.
Use a dichotomy algorithm, the maximum searching times
is log2 nc since the size of the third array is nc where n is
the block number and c is the block width.

Given the identity of a block in the first array of the
BSMC structure, the column ID in the full matrix is firstly
identified by the second array as shown in Figure 1 (right).
Similar to CSR format, the row identity can be obtained
by row counting if the blocks are continuously accessed, or
the row identity must be searched in the third array with
the maximum searching times of log2 n since the size of
the third array is the block number n. Note that one access
in CSR structure only gets one element but it gets a block
which includes c× c elements in BSMC structure.

1.2. The second operation

Given the row and column IDs of a element in full ma-
trix, to find its corresponding position in the CSR structure,
we first locate the start and end column IDs in the second
array from the third array by the row ID in the full matrix
as shown in Figure 1 (left), then the column ID of the ele-
ment in the first array can be searched between the start and
end column IDs. The maximum searching times for each
element is log2 csi. To find a block, we only have to find
the beginning element for each row of this block. There-
fore the total searching times for finding a block is equal to∑c

i=0 log2 csi where si is the number of non-zero blocks in
row i.

Figure 1. Accessing the data in CSR (left) and BSMC (right) for-
mat

Format First Operation Second Operation
CSR 1 or log2 nc

∑c
i=0 log2 csi

BSMC 1 or log2 c log2 si

Table 1. Accessing efficiency of the BSMC and CSR formats

Given the row and column identities of a block in the
full matrix, to find its corresponding position in the BSMC
structure, we first locate the start and end column IDs of
the block in the second array from the third array by the
row identity as shown in Figure 1 (right), and then the col-
umn ID in the first array is searched between the start and
end column IDs with maximum searching times equal to
log2 si. Once the first element of the block is determined,
the element of the whole block is identified. Apparently, for
this operation, the BSMC is more efficient than the CSR.

Table 1 shows the searching times of these two opera-
tions for the BSMC and CSR formats. As shown in Table 1,
if the elements or blocks in the compressed structure are ac-
cessed continuously, the first operation will be immediately
performed for the two formats. In the real case, for matrix-
vector product, the elements or blocks in the compressed
structure are continuously accessed. However, for matrix
updating or aggregation, the second operation is frequently
applied. The accessing efficiency of BSMC for both the
first and second operations is better than the CSR; thus, it’s
strongly recommended for the compression of block-based
sparse matrices, such as the Hessian and RCS.

2. Formation of the RCS
The formation of RCS is a major step in BA. It dominates

the most part of the computation complexity. In this section,
we look into the details of the formation of a RCS and try to
parallelize it. To be specific, given a dataset with 5 cameras

1



Figure 2. The jacobian matrix where A(i, j) and B(j, i) are the
camera and landmark part of the jacobian generated by the edge
of camera i and landmark j.

and 3 landmarks, the Jacobian is shown in Figure 2, and the
Hessian is obtained by normalizing the Jacobian as shown
in Figure 3. The damping is not shown in the figure, but it
does not affect the structure of the Hessian.

The computation of non-zero blocks of the Hessian are
shown in equation (1), (2) and (3).

AT
i Ai =

pi∑
j=0

AT
i,jAi,j (1)

Where pi is the number of landmarks seen by camera i.

BT
i Bi =

qj∑
i=0

BT
j,iBj,i (2)

Where qj is the number of cameras seeing landmark j.

Pi,j = AT
i,jBj,i (3)

According to equation in the main text, conduct Shur com-
plement to the Hessian, we get a matrix Q = WV−1WT

as shown in Figure 5 (left). Then the RCS is computed by
equation R = U −Q as shown in Figure 5 (right). So, to
compute Shur complement is actually to compute the matrix
Q. Each block Qi,j in matrix Q is computed according to
equation (4). Note that the block Qi,j could be zero blocks
if there is none common point between camera i and camera
j.

Qi,j =

ti,j∑
k=0

Qi,j,k (4)

Qi,j,k = Pi,k(B
T
kBk)

−1PT
j,k (5)

Where k is the landmark ID, ti,j is the number of common
points between camera i and camera j.

Q =

L∑
k=0

Qk (6)

Figure 3. The Hessian matrix.

Figure 4. Structure of matrix Qk. The non-zero blocks are not
identified since k is unknown.

Where the matrix Qk is a component of the RCS, L is the
number of 3D points, and k is the ID of 3D points.

Conduct Shur complement to the 3D points, each of
which generates a matrix Qk where k is the ID of the land-
mark, as shown in Figure 4. The matrix Q is the sum of
Qk as shown in equation (6). This indicates that the Shur
complement trick can be done point by point.

According to the Jacobian shown in figure 2, the 3D
point 1 is seen in the camera 1, 2 and 3, the 3D point 2
is seen in the camera 2, 3 and 4, and the 3D point 3 is see
in camera 3, 4 and 5, thus the actual structure of matrix
Q1, Q2 and Q3 are shown in Figure 6. The number and
positions of non-zero blocks are determined by the number
and identities of cameras which see this 3D point. For an
instance, if a landmark k is seen in m cameras, then the
number of non-zero blocks in Qk is m2, and positions of
non-zero blocks are determined by the identities of these
cameras.

The formation of an RCS can be summarized as follows:



Figure 5. The structure of the matrix Q (left) and R (right). The filled blocks are non-zero blocks and the unfilled ones are zero blocks.

Figure 6. The structure of matrix Q1, Q2 and Q3 generated by landmarks 1, 2 and 3 respectively.

(1) For each 3D point k, compute its Jacobian and Hes-
sian, and then conduct the Shur complement to obtain Qk;

(2) Update the RCS with Qk;
(3) Stop until all the 3D points are completed.
According to the above procedures, the formation of

RCS can be divided into parallel tasks, with each consist-
ing of a group of 3D points. Those tasks are independent to
each other; therefore, they can be executed in a distributed
way.


