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Abstract

Due to the lack of space in the main paper, we provide
more details of the proposed method and experimental re-
sults in the supplementary material. Sec. 1 adds the Al-
gorithm of the proposed UDA framework. Sec. 2 provides
the detailed settings of the proposed distortion-aware trans-
former. Sec. 3 gives the thorough derivation process of
the distortion coefficient. Lastly, Sec. 4 presents additional
quantitative and qualitative experimental results and more
details of the ablation study.

1. Algorithm
As shown in Algorithm. 1, our framework is first trained

with the source data and then performs unsupervised do-
main adaption with both source and target data.

2. Detailed settings of DATR
In our proposed DATR, the MLP decoder takes multi-

scale features Fi from the encoder as inputs, and the chan-
nel dimensions are aligned. Then Fi are up-sampled to F4’s
size and concatenated and fused together. Finally, the last
MLP layer takes the fused features to predict the segmenta-
tion labels. The whole process can be formulated as:

F̂ i = Linear(Ci, C)(Fi),∀i;

F̂ i = Upsample(
W

4
× W

4
)(F̂ i),∀i;

F = Linear(4C,C)(Cat(Up(F̂ i))),∀i;
M = Linear(C,Ncls)(F ),

(1)

where Ncls denotes the number of categories, Cat and Up
denote the feature concatenation and the Up-sampling op-
eration, respectively.

*Corresponding author.

Algorithm 1 Our Proposed UDA framework

1: Input: source input: xs, y, target input: xt, maximum
iteration: Ts,Tt, model: f(Θ), Multi-scale pseudo la-
beling: PL(·);

2: Source Data Train:
3: for t←− 1 to Ts do
4: ps, fs = f(xs,Θ);
5: LSEG = CE (ps, y);
6: Back propagation for LSEG;
7: Update parameter set θ;
8: end for
9: Unsupervised Domain Adaptation:

10: for t←− 1 to Tt do
11: pt, ft = f(xt,Θ), ŷt = PL(pt);
12: Lt

SS = CE (pt, ŷt)
13: T t = Proj (Mask (ft, ŷt)), St = Proj(Mask(fs, y))
14: Cs = (1 - 1

t )S
t−1 + 1

tS
t, Ct = (1 - 1

t )T
t−1 + 1

tT
t;

15: Lf = MSE ( Cs, Ct )
16: Lall = Lt

SS + Lf ;
17: Back propagation for Lall;
18: Update parameter set θ;
19: end for
20: return θV

21: End.

The detailed hyper-parameters of our proposed
distortion-aware transformer (DATR) are given in Tab. 1.
We scale up our DATR encoder by changing the hyper-
parameters. The hyper-parameters are listed as follows:

• Ki: the patch size of overlapping patch merging in
Stage i;

• Si: the strides of the patch merging in Stage i;

• Pi: the padding size of the patch merging in Stage i;

• Ci: the channel number of the output of Stage i;

• Li: the number of encoder layer in Stage i;
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Output Size Layer Name DATR

Mini Tiny Small

Stage1 H
4 ×

W
4

Overlapping Patch Embedding K1 = 7;S1 = 4;P1 = 3

C1=32 C1=64

Efficient Self-Attention

R1=8
N1=1
E1=8
L1=2

R1 = 8
N1 = 1
E1 = 8
L1=2

R1=8
N1=1
E1=8
L1=3

Stage2 H
8 ×

W
8

Overlapping Patch Embedding K2=3; S2=2; P2=1

C=64 C=128

Efficient Self-Attention

R2=4
N2=2
E2=8
L=2

R2=4
N2=2
E2=8
L2=2

R2=4
N2=2
E2=8
L2=3

Stage3 H
16 ×

W
16

Overlapping Patch Embedding K3=3; S3=2; P3=1

C=160 C=320

Efficient Self-Attention

R3=4
N3=2
E3=8
L3=2

R3=4
N3=2
E3=8
L3=2

R3=4
N3=2
E3=8
L=3

Stage4 H
32 ×

W
32

Overlapping Patch Embedding K4=3; S4=2; P4=1

C=256 C=512

Distortion-aware Attention
NS4=13
L4=2

NS4=13
L4=2

NS4=13
L4=3

Table 1: Structure settings of the proposed DATR. We follow the design principles of ResNet: the channel dimension increase
when the spatial resolution shrink as the layer goes deeper.

• Ri: the reduction ratio of the Efficient Self-Attention
in Stage i;

• Ni: the head number of the Efficient Self-Attention in
Stage i;

• Ei: the expansion ratio of the feed-forward layer in
Stage i;

• NSi the neighboring size of our proposed Distortion-
aware Attention in stage i.

3. Theoretical Analysis of ERP Distortion
As shown in Fig. 1 (a), (b) and (c), the distance w1, w2

and w0 between pixels in different formats are different. In-
tuitively, w0 = W

n according to the uniform distribution of

Figure 1: Direct Linear Projection (DLP) (a) and ERP (c)
are two projection formats of the same spherical data (b).

pixels, where W is the length of ERP. For the red and blue
pixels at different latitudes, the radius of the circumference
of the circle at the corresponding latitude can be expressed



Method Backbone Cloudy Foggy Rainy Sunny ALL

val val val val val test

PVT [3] Tiny 39.92 34.99 34.01 39.84 36.83 32.37
Small 40.75 36.14 34.29 40.14 37.47 32.68

Segformer [4] MiT-B1 45.34 41.43 40.33 44.36 42.68 37.36
MiT-B2 46.07 40.99 40.10 44.35 42.49 37.24

Trans4PASS [5] Trans4PASS-T 46.90 41.97 41.61 45.52 42.49 37.24
Trans4PASS-S 46.74 43.49 43.39 45.94 44.80 38.57

Trans4PASS+ [6] Trans4PASS+-T 48.33 43.41 43.11 46.99 45.21 38.85
Trans4PASS+-S 48.87 44.80 45.24 47.62 46.47 39.16

DATR-M 59.34 53.44 51.26 49.31 48.97 37.10
DATR DATR-T 50.94 50.90 52.69 50.63 50.67 39.38

DATR-S 51.95 53.92 51.57 51.55 51.93 41.55

Table 2: Performance of SOTA transformer-based panoramic semantic segmentation models. The SynPASS dataset is evalu-
ated on full 22 classes and is divided into four conditions according to weather and two conditions according to light.

as:

rred =
√

r2 − (h1 − r)2; rblue =
√
r2 − (h2 − r)2, (2)

where h1 and h2 are the latitudes of pixels and r is the radius
of the sphere. Consequently, w1 and w2 can be formulated
as:

w1 =
2πrred

n
=

2π
√
2h1r − h2

1

n
=

2π

n

√
h1(2r − h1),

(3)

w2 =
2πrblue

n
=

2π
√
2h2r − h2

2

n
=

2π

n

√
h2(2r − h2),

(4)
where n is the number of sampling pixels at each latitude.
Finally, substituting h1 and h2 into the equation:

w1 =
2π

n

√
h1(

W

π
− h1), (5)

w2 =
2π

n

√
h2(

W

π
− h2), (6)

where W is the length of ERP. Suppose there are n′ pixels
in both w3 and w4, the w4 in Fig. 1 (c) can be formulated
by:

w4 =
n′

n
×W, (7)

where n is the total pixel number in a latitude. Meanwhile,
the w3 in Fig. 1 (a) is similar with w1 and w2:

w3 =
2πn′

n

√
h0(

W

π
− h0) (8)

Then, the distortion coefficient Dis is defined as the differ-
ence between w4 and w3:

Dis = w4 − w3 =
n′

n
(W − 2π

√
h0(

W

π
− ho)). (9)

Obviously, Eq. 9 shows that Dis is an increasing function
affected by n′, indicating the smaller n′, the simpler the
distortion.

4. Experimental Results and Ablation

4.1. Experimental Results

We further provide more instance feature visualization
in Fig. 2 to demonstrate the superiority of our proposed
distortion-aware attention (DA) module.

To evaluate the performance of panoramic semantic seg-
mentation of existing methods and our proposed DATR on
the synthetic dataset, the SynPASS [6] benchmark with all
22 categories is established. As shown in Tab. 2, results
of the Transformer-based methods [3, 4, 5, 6] on the Syn-
PASS [6] dataset are reported. All the models are trained on
the training set and their performance are reported in dif-
ferent weather and day/night conditions. Compared with
the existing state-of-the-art semantic segmentation meth-
ods, our DATR-T surpasses Segformer-B1 [4] by +6.29%
in mIoU on the validation set. The largest improvement
lies on the Foggy condition with a +12.01% gain. All of
the variants of our proposed DATR consistently outperform
PVT [3] and Segformer [4] in all conditions, which show-
cases that our DATR achieves dramatical capability to cap-
ture the pixel-wise neighboring correlations on the synthetic



Method mIoU Road S.W. Build. Wall Fence Pole Tr.L. Tr.S. Veget. Terr. Sky Persin Rider Car Truck Bus Train M.C. B.C.

DAFormer [2] 54.67 73.75 27.34 86.35 35.88 45.56 36.28 25.53 10.65 79.87 41.64 94.74 49.69 25.15 77.70 63.06 65.61 86.68 65.12 48.13
Trans4PASS-T [5] 53.18 78.13 41.19 85.93 29.88 37.02 32.54 21.59 18.94 78.67 45.20 93.88 48.54 16.91 79.58 65.33 55.76 84.63 59.05 37.61
Trans4PASS-S [5] 55.22 78.38 41.58 86.48 31.54 45.54 33.92 22.96 18.27 79.40 41.07 93.82 48.85 23.36 81.02 67.31 69.53 86.13 60.85 39.09

DATR-M (SS) 45.71 75.26 45.22 83.06 24.51 29.64 29.06 16.71 11.40 77.46 25.89 92.37 40.64 10.68 74.62 42.57 49.42 75.85 41.18 23.02
DATR-T (SS) 48.27 77.04 45.93 84.53 30.87 32.41 31.12 19.73 14.63 76.79 30.11 91.61 44.91 17.98 76.93 58.11 50.81 51.18 54.23 28.29
DATR-S (SS) 54.96 80.92 52.69 87.39 43.77 44.02 36.47 25.30 18.61 79.32 33.45 93.73 52.53 26.39 80.32 63.52 48.70 66.01 69.56 41.51

DATR-M (SS + CFA) 52.90 78.71 48.43 86.92 34.92 43.90 33.43 22.39 17.15 78.55 28.38 93.72 52.08 13.24 77.92 56.73 59.53 93.98 51.12 34.06
DATR-T (SS + CFA) 54.60 79.43 49.70 87.39 37.91 44.85 35.06 25.16 19.33 78.73 25.75 93.60 53.52 20.20 78.07 60.43 55.82 91.11 67.03 34.32
DATR-S (SS + CFA) 56.81 80.63 51.77 87.80 44.94 43.73 37.23 25.66 21.00 78.61 26.68 93.77 54.62 29.50 80.03 67.35 63.75 87.67 67.57 37.10

Table 3: Per-class results of the SOTA panoramic image semantic segmentation methods on DensePASS test set. (SS: self-
supervised (SS) training)

Resolutions: 400 × 512 400 × 1024 400 × 2048 200 × 2048 100 × 2048

PVT-S [3] 26.07 (-12.67) 34.28 (-4.46) 38.74 37.50 (-1.24) 28.91 (-9.83)

Trans4PASS+-S [6] 36.67 (-8.62) 42.36 (-2.93) 45.29 44.29 (-1.00) 39.69 (-5.60)

DATR-T 51.68 (-1.55) 52.45 (-0.787) 53.23 50.46 (-2.77) 47.58 (-5.65)

Table 4: Input resolution size vs. performance.

dataset even considering different weather and day/night
scenarios.

Comparing our DART and the state-of-the-art UDA
method for panoramic semantic segmentation, DATR-S
performs more accurately in all conditions and clearly
elevates the overall mIoU scores on both testing and
validation set. As shown in Tab. 2, our DATR-S consis-
tently outperforms the Trans4PASS [6] by +3.08%, 9.12%,
6.33%, 3.93%, 5.46% and 2.39% mIoU increments in
Cloudy, Foggy, Rainy, Sunny, and validation and testing
scenarios, respectively.

As shown in Tab. 3, we provide the per-class mIoU re-
sults of our DATR with different combinations of UDA
modules. Also, additional qualitative results on DensePASS
dataset with 19 and 13 categories are shown in Fig. 4 and
Fig. 5. Fig. 4 and Tab. 3 present more qualitative and quanti-
tative results, and our framework significantly achieves bet-
ter segmentation performance. Meanwhile, as discussed in
the main paper, all of the variants of our method (DATR)
also consistently outperform previous SOTA methods in
the SynPASS-to-DensePASS scenario. Specifically, our
DATR-S achieves dramatical mIoU increment on the
most challenging categories, including Fence (+23.04↑),
Pole (+11.75↑), Tr.Light (+18.29↑), Tr.Sign (+16.75↑),
Person (+8.52↑), and Car (+6.75↑). This is also demon-
strated in Fig. 5, these aforementioned categories are better
segmented by our framework than the existing state-of-the-
art method [5].

4.2. Ablation and Discussion

Difference between DA and Deformable MLP In [6]
DMLP is introduced as a decoder structure that combines
feature patches at multiple scales, the motivation is to ad-
dress the distortion by mixing patches across the channel
dimension, resulting in a large receptive field. By contrast,
our proposed DA module is an attention mechanism incor-
porated into the feature extractor (encoder). DA aims to
reduce the receptive field of the feature extractor, enabling
better distortion awareness. Hence our proposed DA mod-
ule has significant difference with the DMLP. Compared
with the Deformable Patch Embedding (DPE) that operates
on the overall scene in ERP images, our RPE only operates
in the neighboring region and provides local neighboring
positional information to alleviate the distortion problem,
which is more targeted, light-weight and efficient.

We also conduct experiments in Syn-to-DP, using
Trans4PASS-S (DMLP) with our proposed CFA achieves
48.33 mIoU, while our DATR-T with CFA reaches 52.11
mIoU in Table. 3 of the main paper. Meanwhile, Table. 3
also provides the comparison between Trans4PASS+-S and
our DATR. These results confirm that DATR is a better
backbone model for UDA in panoramic segmentation.
Difference between MPA and CFA. Mutual prototypical
adaptation (MPA) aims to align the feature embeddings with
the prototypes obtained in the source and target domains, in-
spired by the knowledge distillation loss in [1]. By contrast,
our proposed class-wise feature aggregation (CFA) module
focuses on aligning the class centers (prototypes) of both
domains, which is computationally cheaper and achieves
better results.



Panoramic Images SA DA

Figure 2: Visualization of the extracted features from panoramic images by Self-Attention (SA) and Distortion-aware Atten-
tion (DA).

Figure 3: Visualization examples of our proposed RPE.



(a) Trans4PASS (b) Ours (c) Ground Truth

Figure 4: Qualitative results on Cityscapes-to-DensePASS (Pinhole-to-Panoramic) dataset. (a)Trans4PASS [5], (b)ours with
DATR-S and (c) Ground Truth.



(a) Trans4PASS (b) Ours (c) Ground Truth
Figure 5: Qualitative results on SynPASS-to-DensePASS (Synthetic-to-Real) dataset. (a)Trans4PASS [5], (b)ours with
DATR-S and (c) Ground Truth.
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