
Multi-task View Synthesis with Neural Radiance Fields
Supplementary Material

In this supplementary material, we first present a demo
video to show the multi-task view synthesis quality of the
proposed MuvieNeRF in Section A. Next, in Section B we
provide additional qualitative results, including more visu-
alizations for the two main datasets and results on other out-
of-distribution datasets. We conduct additional experimen-
tal evaluations to analyze the behavior of our model under
different settings in Section C. We further present the mul-
tiple run results of our model and the compared methods in
Section D, demonstrating that our MuvieNeRF consistently
achieves the best performance. Finally, we include addi-
tional details about our model implementation and dataset
processing in Section E.

A. Demo Video

We include a demo video in the supplementary zip
file. This video shows the synthesis quality of our Mu-
vieNeRF when performing a zero-shot adaption on testing
scenes in the Replica dataset [20].

We regard the 50 views in the testing scene “room 0”
as anchor views and use a linear interpolation on the cam-
era pose of the 50 anchor views to obtain camera poses
between the adjacent anchor views. For each pair of an-
chor views, we interpolate 4 views, thus making a total of
246 views. We render the RGB, surface normal, shading,
edge, keypoint, and semantic label maps using our Mu-
vieNeRF model for each of the 246 views at 16 FPS.

In the demo video, we also compare our performance
with a state-of-the-art conventional discriminative multi-
task learning method [25] in the hybrid setting, which
is trained with ground-truth annotations and tuned with
NeRF’s predictions. Our model is able to make more ac-
curate and consistent predictions. In comparison, the con-
ventional multi-task learning method generates predictions
that are noisy and inconsistent across different views, in-
dicating the importance of our joint modeling strategy of
different tasks and our designed CTA and CVA modules to
foster multi-task information flow and cross-view consis-
tency.

Datasets ScanNet [4] TartanAir [23] LLFF [13] BlendedMVS [24]
Number of scenes 4 4 8 2
Resolution 384×288 640×480 1008×756 768×576
Contents Indoor Indoor, Outdoor Indoor, Outdoor, Object Object

Table A. Detailed information about the four out-of-distribution
datasets, which contain indoor, outdoor, and/or even object-centric
scenes.

B. More Visualizations

We provide more qualitative results from the following
two aspects: (1) visual comparison with other synthesis
methods and (2) RGB synthesis results on other out-of-
distribution datasets.

B.1. Comparison with Other Synthesis Methods

Additional qualitative comparisons for all the compared
methods in the Replica and SceneNet RGB-D datasets are
shown in Figure A and Figure B, respectively. Our Mu-
vieNeRF outperforms other methods with clearer and more
accurate contours of the objects in scenes. This is because
MuvieNeRF utilizes the CTA and CVA modules to better
take advantage of the shared knowledge across different
downstream tasks and the cross-view information.

B.2. Out-of-distribution Generalization

In the main paper, we present a practical application of
our proposed MuvieNeRF to show that the multi-task in-
formation learned from one dataset can be generalized to
the scenes in other datasets. We use MuvieNeRF trained on
the Replica dataset to perform a zero-shot adaption on out-
of-distribution datasets: LLFF [13], TartanAir [23], Scan-
Net [4], and BlendedMVS [24] containing indoor, outdoor
and even object-centric scenes. The detailed information of
these four datasets is listed in Table A.

The RGB synthesis results on those out-of-distribution
datasets are shown in Figure C. We can observe that
our model renders higher-quality RGB images from novel
views with sharper contours compared to the GeoNeRF
baseline. The underlying reason lies in the joint model-
ing of edges and surface normal during training, which
makes RGB prediction more precise even for the out-of-
distribution datasets.
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Figure A. Additional qualitative results on one testing scene in the Replica dataset. Our proposed MuvieNeRFoutperforms other methods
with more accurate predictions and sharper boundaries, which demonstrates the effectiveness of the multi-task and cross-view information
modeled by the CTA and CVA modules. Zoom in to better see the comparison.

Index Training Scene Name SN SH ED KP SL
1 apartment 0 (a) × × ✓ × ✓
2 apartment 0 (b) ✓ × ✓ ✓ ✓
3 apartment 1 ✓ ✓ ✓ ✓ ×
4 apartment 2 (a) × ✓ ✓ ✓ ✓
5 apartment 2 (b) ✓ ✓ ✓ ✓ ✓
6 apartment 2 (c) × ✓ × ✓ ×
7 FRL apartment 0 (a) ✓ ✓ ✓ ✓ ✓
8 FRL apartment 0 (b) ✓ × × ✓ ✓
9 hotel 0 (a) × ✓ ✓ ✓ ×
10 hotel 0 (b) ✓ ✓ ✓ × ×
11 hotel 0 (c) × ✓ ✓ × ✓
12 hotel 0 (d) ✓ ✓ × ✓ ✓
13 office 0 (a) ✓ × × × ✓
14 office 0 (b) × ✓ ✓ × ✓
15 office 0 (c) ✓ ✓ × ✓ ×
16 office 2 × ✓ ✓ ✓ ✓
17 room 2 (a) ✓ ✓ ✓ × ×
18 room 2 (b) ✓ × × ✓ ✓

Table B. Simulated federated training setting where some of the
task annotations for certain training scenes are unavailable.

C. Additional Experimental Evaluation

We provide additional experimental evaluations to un-
derstand the behavior of MuvieNeRFand its capability from
various aspects: (1) we evaluate our model in a feder-
ated training setting; (2) we ablate the CTA module with
a lightweight choice of the cross-stitch module [14]; (3) we
report the results with a half-sized training set; (4) we pro-
vide an additional comparison for the discriminative models
with extra data; and (6) we ablate the contributions of the
proposed CTA and CVA modules in the more challenging
setting formulated by Equation 2.

C.1. Federated Training with Partial Annotations

In the real-world regime, it is not always possible to get
access to all the different types of annotations to train a
model. In this scenario, federated training [10] is widely
used. To simulate the real-world regime, we propose such a
setting where every task annotation for each training scene
has a 30% probability of being unavailable. The detailed
setting is shown in Table B, where only 2 scenes get ac-
cess to all annotations. We train our MuvieNeRF on this
subset and compare against the two NeRF-based baselines
Semantic-NeRF [29] and SS-NeRF [28] trained on the full
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Figure B. Additional qualitative results on one testing scene in the SceneNet RGB-D dataset. Our proposed MuvieNeRFoutperforms other
methods, indicating that our model benefits from the multi-task and cross-view information with the designed CTA and CVA modules.
The black regions in the surface normal visualizations are due to the missing depth values in those regions. Zoom in to better see the
comparison.

training set. The evaluation is conducted on the same test-
ing scenes in Replica.

The results are shown in Table C. We have the follow-
ing observations. First, our model still outperforms the
two baselines even with missing annotations, indicating that
leveraging multi-task and cross-view information in our
proposed MuvieNeRF is the key to the success. Second,
we still achieve comparable results to the model trained
with the full training set, showing the robustness and label-
efficiency of our method.

C.2. Comparison with Lightweight Cross-task
Modules

The novel CVA and CTA modules are designed to
facilitate multi-task and cross-view information interac-
tion, which improves the performance of MuvieNeRF. In
this section, we provide an additional ablation with a
lightweight choice of CTA modules. We show in the fol-
lowing that although the simpler module reaches compara-

Settings RGB (↑) SN (↓) SH (↓) ED (↓) KP (↓) SL (↑)
Full set + Semantic-NeRF 27.08 0.0221 0.0418 0.0212 0.0055 0.9417
Full set + SS-NeRF 27.22 0.0224 0.0405 0.0196 0.0053 0.9483
Full set + MuvieNeRF 28.55 0.0201 0.0408 0.0162 0.0051 0.9563
w/o Full set + MuvieNeRF 27.86 0.0212 0.0422 0.0185 0.0053 0.9526

Table C. Comparison between our model and two baselines in a
federated training setting. Our MuvieNeRF model still outper-
forms the two baselines and even achieves comparable results to
the model trained with the full set, indicating the effectiveness and
robustness of the proposed method.

ble performance when modeling RGB together with two ad-
ditional tasks, its performance significantly lags behind our
novel design when handling the more challenging setting
with RGB modeled with five additional tasks. It demon-
strates that the designed CVA and CTA modules in our Mu-
vieNeRF have a larger capacity for modeling multiple tasks.

Concretely, we adopt the cross-stitch [14] module for ex-
perimental evaluation. The cross-stitch module takes a sim-
ple strategy of performing a learned combination of task-
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Figure C. Additional qualitative RGB synthesis results on out-of-
distribution datasets. From top to bottom: ScanNet [4], Tar-
tanAir [23], and LLFF [13]. Our MuvieNeRF yields better visual
quality, demonstrating that the multi-task and cross-view knowl-
edge learned during training can be generalized and applied to out-
of-distribution datasets. Zoom in to better see the comparison.

specific features. More specifically, when applied in our
MuvieNeRF pipeline, it functions after the “separate de-
coders” as

Fout = WFin, (1)

where Fin, Fout ∈ RK×V×c are the input and output of
the cross-stitch module, respectively. W ∈ RK×K is a
learnable weight matrix with an L2 regularization for each
row. Each weight value wij measures the information the
j-th component obtained from the i-th component.

The experimental comparison of our MuvieNeRF and
the simpler cross-stitch implementation is shown in Ta-
ble D. When modeling with only two additional tasks, the
cross-stitch module could reach comparable performance to
our method. However, when the number of tasks jointly
learned with RGB increases to five, the cross-stitch imple-

Tasks RGB (↑) SN (↓) SL (↑)
Cross-stitch (RGB + 2 Tasks) 27.16 0.0242 0.9519
MuvieNeRF (RGB + 2 Tasks) 26.97 0.0229 0.9476
Cross-stitch (RGB + 5 Tasks) 27.57 0.0219 0.9459
MuvieNeRF (RGB + 5 Tasks) 28.55 0.0201 0.9563

Table D. Comparison between our MuvieNeRF model design and
a simpler cross-stitch [14] multi-task module. The results are av-
eraged over the testing scenes on the Replica dataset. The simpler
cross-stitch implementation can reach comparable results when
the target is easier (RGB + 2 tasks), but fails to achieve satisfac-
tory results when the target becomes more challenging (RGB + 5
tasks). In comparison, our model is able to achieve better perfor-
mance with more tasks learned together.

mentation fails to serve as an efficient multi-task learning
strategy. This indicates that although the simpler cross-
stitch module can afford to benefit the information exchange
in the easier cases when two tasks beyond RGB are jointly
modeled, it does not have enough capacity to handle the
more complicated relationships of five tasks along with
RGB. In comparison, our design of the CVA and CTA mod-
ules is superior, which leads to the success of modeling
more tasks.

C.3. Results with a Half-sized Training Set

We further investigate the robustness of our model by
decreasing the number of scenes in the training dataset to
only half of the original size. The results are shown in Ta-
ble F. We could observe a similar phenomenon as the feder-
ated training result in Table C: when the number of training
scenes reduces, the performance of our model only drops
slightly while still outperforming the other compared meth-
ods, demonstrating the robustness and sample-efficiency of
our method.

C.4. Additional Comparisons with Discriminative
Models

We add the following two sets of comparisons for dis-
criminative models on Table E: (1) we use 15K images ren-
dered from the Replica dataset for training; (2) we use a
pre-trained checkpoint (Taskgrouping-4M, the only avail-
able multi-task one with 4 tasks) on Taskonomy (∼4M data)
for initialization and finetune it on Replica. All these vari-
ants still cannot outperform our MuvieNeRF, indicating that
the discriminative models still lack the ability of multi-
view reasoning even when the training data increases.

C.5. Contributions of CTA and CVA Modules with
the More Challenging Setting

In Table 4 in the main paper, we dissect the individual
contributions of the proposed CTA and CVA modules with
our primary setting. We additionally ablate their contribu-
tions of them in the more challenging setting formulated by
Equation 2. The results in Table H show similar conclusions



Model NeRF’s Images (No Tuned) NeRF’s Images (Tuned) GT Images (Upper Bound)
SN (↓) SH (↓) ED (↓) KP (↓) SL (↑) SN (↓) SH (↓) ED (↓) KP (↓) SL (↑) SN (↓) SH (↓) ED (↓) KP (↓) SL (↑)

Taskgrouping (15k) 0.0464 0.0757 0.0418 0.0088 0.6633 0.0479 0.0531 0.0388 0.0087 0.7193 0.0438 0.0509 0.0284 0.0058 0.7509
MTI-Net (15k) 0.0533 0.0676 0.0414 0.0089 0.5509 0.0463 0.0581 0.0314 0.0079 0.6821 0.0462 0.0500 0.0271 0.0050 0.7555
InvPT (15k) 0.0463 0.0580 0.0417 0.0079 0.7157 0.0399 0.0477 0.0272 0.0057 0.7719 0.0402 0.0472 0.0257 0.0047 0.7981
Taskgrouping-4M 0.0451 - 0.0350 0.0079 0.6692 0.0313 - 0.0311 0.0066 0.7818 0.0231 - 0.0112 0.0040 0.8376
MuvieNeRF 0.0201 0.0408 0.0162 0.0051 0.9563 - - - - - - - - - -

Table E. Additional comparison with discriminative models. Training discriminative models with a larger amount of data still cannot
outperform our MuvieNeRF, indicating that the discriminative models still lack the ability of multi-view reasoning even when the training
data increases.

Settings RGB (↑) SN (↓) SH (↓) ED (↓) KP (↓) SL (↑)
Full + Semantic-NeRF 27.08 0.0221 0.0418 0.0212 0.0055 0.9417
Full + SS-NeRF 27.22 0.0224 0.0405 0.0196 0.0053 0.9483
Full + MuvieNeRF 28.55 0.0201 0.0408 0.0162 0.0051 0.9563
Half + MuvieNeRF 28.11 0.0211 0.0427 0.0168 0.0054 0.9562

Table F. Comparison of training with only half training scenes in
Replica. Our model still achieves relatively satisfactory results
when the number of training scenes reduces to only half, indicating
the sample-efficiency and robustness of our method.

to our main table and validate the proposed CVA and CTA
modules are universally beneficial.

D. Multiple Runs
To further validate the robustness and good performance

of our model against other methods, we show the re-
sults of multiple runs on the Replica dataset in Table G.
Our MuvieNeRF consistently outperforms the single-task
Semantic-NeRF [29] and the multi-task SS-NeRF [28]
baselines, demonstrating the effectiveness of our model de-
sign.

E. Implementation Details
We provide the architecture of the conditional NeRF en-

coders and the additional U-Net [16] discriminative module
we used for Section 4.5. More details of the training proce-
dure and dataset processing are also included.

E.1. Conditional NeRF Encoders

GeoNeRF [7] encoder first uses a feature pyramid net-
work [9] to encode input views of the scene to cascaded
cost volumes [5]. Next, it masks out the input view features
when the depth of the current 3D point is larger than the
estimated depth in the corresponding input view. Finally,
four cross-view attention operations are used to process the
multi-view tokens. We refer to the official repository 1 of
GeoNeRF for our implementation.
MVSNeRF [2] encoder takes a similar architecture to the
GeoNeRF encoder only without the cross-view attention
modules. We refer to the released codes 2 for implemen-

1https://github.com/idiap/GeoNeRF
2https://github.com/apchenstu/mvsnerf

tation.
PixelNeRF [26] encoder uses ResNet-34 [6] as the back-
bone of its feature extractor. It chooses the features prior to
the first four pooling layers and upsamples them to be in the
same shape as the input RGB images to obtain the multi-
scale features. Next, the sampled points are projected to the
image planes of the input views to obtain the projected fea-
ture from the V source views. We implement it based on
the official repository 3.
GNT [21] encoder 4 also adopts ResNet-34 as the feature
encoder to obtain the multi-view features from multi-view
RGB inputs. We apply the same strategy as the PixelNeRF
encoder to obtain the features for single 3D points. Notice
that, in the original GNT model which is solely designed for
RGB synthesis, the multi-view features further go through
a view transformer [22]. However, the output of their trans-
former is not compatible with our designed decoder pipeline
so we only treat the ResNet part as the encoder. Therefore,
the GNT encoder serves as the single-scale version of the
PixelNeRF encoder in our experiments and it can explain
the reason why the GNT encoder performs the worst in our
main paper.

E.2. The Additional Discriminative Module

In Section 3.4 and 4.5 we introduce the model
MuvieNeRFD for the more challenging problem setting
with unknown nearby-view annotations. We take the
encoder-decoder structure used in [19] for the U-Net shaped
module FUNet, which takes RGB images as the input and
predicts pixel-level scene properties.

Concretely, for the U-Net module, we use a shared en-
coder with the Xception [3] as the backbone and apply K
light-weighted deconvolutional layers [15] to predict multi-
ple scene properties. After the predictions, we use the 3D
coordinate of the queried point to project the sampled points
to the input image planes to obtain the single-pixel scene
properties for the weighted sum.

E.3. Training Details

We set the weights for the six chosen tasks as λRGB = 1,
λSN = 1, λSL = 0.04, λSH = 0.1, λKP = 2, and

3https://github.com/sxyu/pixel-nerf
4https://github.com/VITA-Group/GNT

https://github.com/idiap/GeoNeRF
https://github.com/apchenstu/mvsnerf
https://github.com/sxyu/pixel-nerf
https://github.com/VITA-Group/GNT


Tasks RGB (↑) SN (↓) SH (↓) ED (↓) KP (↓) SL (↑)
Training

scene
evaluation

Semantic-NeRF 33.79 (±0.1579) 0.0231 (±0.0013) 0.0400 (±0.0005) 0.0127 (±0.0003) 0.0037 (±0.0000) 0.9522 (±0.0017)
SS-NeRF 34.07 (±0.2572) 0.0212 (±0.0008) 0.0379 (±0.0007) 0.0113 (±0.0005) 0.0035 (±0.0000) 0.9528 (±0.0023)
MuvieNeRF 34.85 (±0.1440) 0.0197 (±0.0003) 0.0352 (±0.0006) 0.0102 (±0.0003) 0.0034 (±0.0000) 0.9589 (±0.0009)

Testing
scene

evaluation

Semantic-NeRF 26.94 (±0.3180) 0.0219 (±0.0004) 0.0410 (±0.0005) 0.0195 (±0.0018) 0.0054 (±0.0001) 0.9502 (±0.0053)
SS-NeRF 27.65 (±0.6055) 0.0216 (±0.0010) 0.0405 (±0.0004) 0.0184 (±0.0016) 0.0053 (±0.0001) 0.9503 (±0.0070)
MuvieNeRF 28.50 (±0.2127) 0.0200 (±0.0002) 0.0402 (±0.0006) 0.0164 (±0.0004) 0.0051 (±0.0001) 0.9586 (±0.0033)

Table G. Results of all the compared models with four multiple runs on the Replica dataset. Our MuvieNeRF consistently has better
performance and overall smaller deviation among multiple runs than the single-task Semantic-NeRF [29] and the multi-task SS-NeRF [28],
demonstrating the effectiveness of our model design.

Model SN (↓) ED (↓) KP (↓)
MuvieNeRFw/o CTA 0.0694 0.0256 0.0079
MuvieNeRFw/o CVA 0.0668 0.0246 0.0076
MuvieNeRFD 0.0605 0.0230 0.0074

Table H. Ablation study with CTA and CVA modules
on Replica [20] dataset with the more challenging set-
ting. MuvieNeRFw/o CTA is the variant without CTA module;
MuvieNeRFw/o CVA is the variant without CVA module. The pro-
posed CVA and CTA modules are universally beneficial for both
problem settings.

λED = 0.4 based on empirical observations. We use the
Adam [8] optimizer with an initial learning rate of 5×10−4

and set β1 = 0.9, β2 = 0.999. During training, each iter-
ation contains a batch size of 1024 rays randomly sampled
from all training scenes. The number of input views is set
to 5. Following [14], we adopt a two-stage training strategy.
We first train all the parameters except for the self-attention
modules in the CTA module for 5 × 103 iterations. After-
wards, we train the parameters in the self-attention modules
along with other parameters for 1× 103 iterations. We train
our model on a single NVIDIA A100 with 40GB memory
for around 2.5 hours.

E.4. Datasets Details

Replica dataset [20] is a synthetic dataset which has ac-
curate 3D mesh, semantic annotations and depth informa-
tion. For semantic labels (SL), we map the original 88-class
semantic labels in Replica dataset to the commonly-used
13-class annotation defined in NYUv2-13 [18]. For surface
normal (SN), we derive it from depth:

SN(x, y, z) = (−dz

dx
,−dz

dy
, 1), (2)

where (x, y, z) is the 3D coordinate and dz
dx , dz

dy are the gra-
dients of x and y with respect to z, respectively. Edge (ED)
and keypoint (KP) are rendered with Canny [1] edge detec-
tor and SIFT [11]. Shadings (SH) are obtained by XTCon-
sistency [27] which are pre-trained on indoor scenes. To
better satisfy the multi-task setting in the real world with
unknown camera poses, we generate the poses of each scene
with COLMAP [17].

SceneNet RGB-D dataset [12] is a large-scale photorealis-
tic dataset that allows rendering RGB images along with
pixel-wise semantic and depth annotations. We use the
same strategy as the Replica dataset to obtain the seman-
tic labels and surface normal for SceneNet RGB-D. We
also use Canny and SIFT to render the ED and KP anno-
tations. The pre-trained model for SH failed to work on this
dataset; therefore, we discard shadings for the evaluation on
SceneNet RGB-D.
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