
Online Clustered Codebook

A. Experiment Details
For data compression, we first demonstrate our method on small datasets with the officially released VQ-VAE [37] imple-

mentation 45, and we then verify the generality of our quantiser on large datasets using the officially released VQ-GAN [11]
architecture 6. For image generation application, we apply our CVQ-VAE’s quantiser on LSUN dataset using the officially
released LDM [32] code7.

For the small datasets (MNIST, CIFAR10, and Fashion MNIST), we use the submitted code to train the model. The
training hyperparameters match the original VQ-VAE settings, and we train all models with batch size 1,024 across 4⇥
NVIDIA GeForce GTX TITAN X (12GB per GPU) with 500 epochs (2-3 hours).

For the high resolution datasets (FFHQ and ImageNet), we just replace the original quantiser in VQGAN with our CVQ-
VAE quantiser. The training hyperparameters also follow the original settings, and we train all models with batch size 64
across 4⇥ NVIDIA RTX A6000 (48GB per GPU) with 4 days on FFHQ and 8 days on ImageNet until converge.

For the generation (LSUN bedrooms and Churches), we use the lSUN-beds256 config file for default setting with two
modifications: 1) we also replace the VQGAN’s quantiser with our CVQ-VAE quantiser; 2) we reduce the images’ resolution
for faster training with 8⇥ downsampling. For stage a) codebook learning, two models are trained with batch size 32 across
2⇥ NVIDIA RTX A4000 (48GB per GPU) with 5 days. Then, for stage b) latent diffusion model with 32⇥32⇥4 resolution,
we train the models with batch size 128 across 2⇥ NVIDIA RTX A4000 (48GB per GPU) with 7 days. During the inference,
we follow the default settings to sample the images with 200 steps.

B. Quantitative Results

Method Dataset `1loss # SSIM " PSNR " LPIPS # rFID #
VQ-VAE [37]

MNIST

0.0207 0.9777 26.48 0.0282 3.43
HVQ-VAE [39] 0.0202 0.9790 26.90 0.0270 3.17
SQ-VAE [36] 0.0197 0.9819 27.49 0.0256 3.05
CVQ-VAE 0.0180 0.9833 27.87 0.0222 1.80
VQ-VAE [37]

CIFAR10

0.0527 0.8595 23.32 0.2504 39.67
HVQ-VAE [39] 0.0533 0.8553 23.22 0.2553 41.08
SQ-VAE [36] 0.0482 0.8779 24.07 0.2333 37.92
CVQ-VAE 0.0448 0.8978 24.72 0.1883 24.73

Table B.1: Reconstruction results on the validation sets of MNIST (10,000 images) and CIFAR10 (10,000 images).

Table B.1 provides a comparison of our results to state-of-the-art quantisers under the same training settings, except for
the different quantisers, on the small datasets. This is an extension of Tab. 1 in the main paper. All images are normalised
to the range [0,1] for quantitative evaluation. See the code for more details. While the proposed CVQ-VAE achieve relative
small improvements on traditional pixel-level `1 loss, peak signal-to-noise ration (PSNR), and patch-level structure similarity
index (SSIM), it significantly improves the feature-level LPIPS and dataset-level rFID, suggesting that our CVQ-VAE is more
capable of reconstructing the content closer to the dataset distribution.

We further compare our CVQ-VAE to the state-of-the-art methods in data compression in Tab. B.2. This is an extension of
Tab. 2 in the main paper. Here, we add the pixel-level PSNR, patch-level SSIM and feature-level LPIPS. For FFHQ dataset,
our CVQ-VAE model outperforms baseline variants of previous state-of-the-art models. As for ImageNet dataset, while our
4⇥ channels setting does not achieve the better rFID than the latest MoVQ model, the other instantiations (PSNR, SSIM and
LPIPS) significantly outperform existing state-of-the-art models.

Tables B.3 and B.4 are the extension of Tabs. 3 and 4c in the main paper, respectively. Even reported with the different
metrics, The conclusions are still the same. For instance, the offline version is significantly affected by different anchor

4https://github.com/deepmind/sonnet/blob/v2/sonnet/src/nets/vqvae.py
5https://github.com/deepmind/sonnet/blob/v1/sonnet/examples/vqvae example.ipynb
6https://github.com/CompVis/taming-transformers
7https://github.com/CompVis/latent-diffusion

https://github.com/deepmind/sonnet/blob/v2/sonnet/src/nets/vqvae.py
https://github.com/deepmind/sonnet/blob/v1/sonnet/examples/vqvae_example.ipynb
https://github.com/CompVis/taming-transformers
https://github.com/CompVis/latent-diffusion


Method Dataset S # K # Usage " PSNR " SSIM " LPIPS # rFID #
VQGAN [11]

FFHQ

162 1024 42% 22.24 0.6641 0.1175 4.42
ViT-VQGAN [44] 322 8192 – – – – 3.13
RQ-VAE [22] 162⇥4 2048 – 22.99 0.6700 0.1302 3.88
MoVQ [47] 162⇥4 1024 56% 26.72 0.8212 0.0585 2.26
SeQ-GAN [13] 162 1024 100% – – – 3.12
CVQ-VAE (ours) 162 1024 100% 26.82 0.8313 0.0608 2.80
CVQ-VAE (ours) 162⇥4 1024 100% 26.87 0.8398 0.0533 2.03
VQGAN [11]

ImageNet

162 1024 44% 19.07 0.5183 0.2011 7.94
ViT-VQGAN [44] 322 8192 96% – – – 1.28
RQ-VAE [22] 82⇥16 16384 - – – – 1.83
MoVQ [47] 162⇥4 1024 63% 22.42 0.6731 0.1132 1.12
SeQ-GAN [13] 162 1024 100% – – – 1.99
CVQ-VAE (ours) 162 1024 100% 21.95 0.6612 0.1340 1.57
CVQ-VAE (ours) 162⇥4 1024 100% 23.37 0.7115 0.1099 1.20

Table B.2: Reconstruction results on validation sets of ImageNet (50,000 images) and FFHQ (10,000 images). S denotes
the latent size of encoded features, and K is the number of codevectors in the codebook.

Method MNIST (28⇥28) CFAIR10 (32⇥32) Fashion MNIST (28⇥28)
`1 # PSNR " rFID # `1 # PSNR " rFID # `1 # PSNR " rFID #

A Baseline VQ-VAE [37]NeurIPS’2017 0.0207 26.48 3.43 0.0527 23.32 39.67 0.0377 23.93 12.73
B + Cosine distance 0.0200 26.77 3.06 0.0509 23.66 35.14 0.0378 24.01 11.40
C + Anchor initialization (offline) 0.0192 27.24 2.78 0.0481 24.16 31.10 0.0373 24.04 11.92
D + Anchor initialization (online) 0.0186 27.58 2.23 0.0445 24.79 26.62 0.0349 24.69 9.27
E + Contrastive loss 0.0180 27.87 1.80 0.0448 24.72 24.73 0.0344 24.66 8.85

Table B.3: Results on various settings. We add pixel-level `1 and PSNR metrics.

Method Dataset Offline Online
`1loss # SSIM " PSNR " LPIPS # rFID # `1loss # SSIM " PSNR " LPIPS # rFID #

random

MNIST

0.0195 0.9802 27.11 0.0262 3.20 0.0185 0.9823 27.58 0.0236 2.27
unique 0.0191 0.9811 27.25 0.0255 2.84 0.0186 0.9820 27.51 0.0237 2.24
probability 0.0192 0.9810 27.24 0.0253 2.78 0.0186 0.9823 27.58 0.0236 2.23
closest 0.0186 0.9823 27.59 0.0242 2.51 0.0187 0.9819 27.49 0.0244 2.59

random

CIFAR10

0.0494 0.8755 23.91 0.2256 34.49 0.0440 0.9010 24.88 0.1881 26.04
unique 0.0507 0.8705 23.15 0.2346 36.99 0.0439 0.9007 24.91 0.1877 26.03
probability 0.0481 0.8829 24.16 0.2131 31.10 0.0445 0.8991 24.79 0.1898 26.62
closest 0.0487 0.8804 24.06 0.2156 32.31 0.0444 0.8994 24.83 0.1900 25.99

Table B.4: Anchor sampling methods. The choice of anchor sampling method has a significant impact on offline (one-time)
feature initialization, while the online clustered method is robust for various samplings.

sampling methods, but the online version is not sensitive to various anchor sampling methods. The online version holds very
close performance with these anchor sampling methods.


