
Supplementary Material

A. Implementation Details
Training Loss. We train PIPs+ and PIPs++ using the
weighted L1 distance between the estimated trajectory and
the ground truth trajectory across iterative updates as pro-
posed by Harley et al. [2]. For any query point pn, we com-
pute the loss as follows:

Ln =

K∑
k=1

(
γK−k 1

T

T∑
t=1

||pkt,n − p∗t,n||1

)
, (1)

where pkt,n denotes the estimated position at timestep t,
from iteration k, and p∗t,n is the ground truth. We set
γ = 0.8 in our experiment. The full training loss is ob-
tained by averaging the per-point loss across all the N query
points:

L =
1

N

N∑
n=1

Ln . (2)

The loss is applied even when the target is occluded, which
asks the model to estimate the track during visibility gaps.
Note that PIPs [2] is also trained with a visibility classifica-
tion loss, to predict whether a point is occluded, along with
a score loss that supervises the similarity score map to peak
at the correct locations to help the network converge faster.
We find that those losses can be omitted without harming
tracking performance, and therefore we only use the L loss
presented in Eq. (2).

Test Time Trajectory Chaining. In order to track with
PIPs for more than 8 frames, Harley et al. [2] link multiple
8-frame predictions. The linking strategy works per-point:
after tracking for 8 frames and estimating visibility on each
frame, the tracker is re-initialized on the last timestep whose
visibility exceeds a threshold. While PIPs runs quickly
within 8-frame clips, this chaining strategy leads to an over-
all FPS of 3.6 (at 720×1080 on an Nvidia V100 GPU). Al-
though PIPs++ does not in principle require a linking strat-
egy, our GPU memory constraints necessitate one. We use
a very simple strategy: we predict 36 timesteps at a time, in
sliding-window fashion, with no overlap between the win-
dows. Since there is no visibility check, this is very fast,
leading to an overall FPS of 55.2. The model can be run
with larger or smaller windows, but in a small grid search
we found that 36 works best, possibly because this was also
the sequence length used at training time.

B. Additional Visualizations of PointOdyssey
Sample animated characters from the dataset are shown

in Fig. 1. By retargeting motion data to these characters, we
are able to generate a wide range of interacting sequences,
as illustrated in Fig. 2.

Samples of our re-built motion capture environments are
shown in Fig. 3.

Fig. 4 shows sample images pixel trajectories from the
dataset.

We recommend watching the supplementary video for
additional visualizations.

C. Additional Results
We show the performance of PIPs [2] and our PIPs++

method on real-world data in Fig. 5. While PIPs can track
visible points effectively, it struggles with occlusions. Tra-
jectories from PIPs++ are on average less sensitive to oc-
clusions.

References
[1] Carl Doersch, Ankush Gupta, Larisa Markeeva, Adrià Re-

casens, Lucas Smaira, Yusuf Aytar, João Carreira, Andrew
Zisserman, and Yi Yang. TAP-Vid: A benchmark for track-
ing any point in a video. NeurIPS Datasets and Benchmarks,
2022. 5

[2] Adam W Harley, Zhaoyuan Fang, and Katerina Fragkiadaki.
Particle video revisited: Tracking through occlusions using
point trajectories. In ECCV, 2022. 1, 5

Figure 1: Sample characters from our dataset.

Figure 2: Sample motions from our dataset.

I

Figure 3: Examples of the rebuilt 3D scenes, with humans at a random timestep in their trajectories.

Figure 4: Sample RGB videos and point trajectories from PointOdyssey. The four rows show: (1) a robot walking in a
stadium interacting with random objects; (2) a crystal rabbit in the desert interacting with random objects; (3) four human
characters dancing in a room; (4) an ego-centric view of one character talking to another.

GT

Ours

PIPs

GT

Ours

PIPs

Figure 5: Qualitative results on Tap-Vid-DAVIS [1]. While PIPs [2] can track well during high visibility (as shown in the
top horse riding sequence), it becomes unreliable when occlusions occur (as shown in the bike riding sequence). PIPs++ can
withstand such occlusions more frequently than PIPs, likely thanks to its wider temporal receptive field.

