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A. Implementation details
A.1. Dataset description

xView2 dataset [5] is used to benchmark the models for
one-to-many semantic change detection [10] in the con-
text of the sudden-onset natural disasters. There are six
diaster types of earthquake, wildfire, volcano, storm, flood-
ing, and tsunami in the dataset. This dataset contains 9,168
image pairs of train&tier3 split, 933 image pairs of
test split, and 933 image pairs of holdout split, cover-
ing 45,361.79 km2 areas. Each optical RGB image has a
fixed size of 1,024×1,024 pixels. The images were collected
from WorldView-2, WorldView-3, and GeoEye satellites,
with varying sub-meter spatial resolutions. The total of
building instances is 850,736.
xView2 pre-diaster, used in this paper, is the pre-disaster
part of xView2 dataset.
LEVIR-CD dataset [2] consists of 637 bitemporal image
pairs, which were collected from the Google Earth platform.
Each image has a fixed size of 1,024×1,024 pixels, with a
spatial resolution of 0.5 m. This dataset provides a total of
31,333 change (building appearing, building disappearing)
labels of building instances, but without semantic segmenta-
tion masks. LEVIR-CD dataset is officially split into train,
val, and test, three parts of which include 445, 64, and
128 pairs, respectively.
WHU-CD dataset [6] consists of two aerial images collected
in 2012 and 2016, which contains 12,796 and 16,077 build-
ing instances respectively. Each image has a fixed size of
15,354×32,507 pixels with a spatial resolution of 0.2 m. The
change type is mainly building construction. The experiment
(Table 4 in the main text) requires an official train/val/test
split of the dataset, whereas WHU-CD has no such one.
Thus, we directly use the entire WHU-CD for zero-shot
evaluation to avoid debate.
S2Looking dataset [9] contains 5,000 image pairs with spa-
tial resolutions from 0.5 to 0.8 m and 65,920 change in-
stances. The official train, val, and test splits include
3,500, 500, and 1,000 pairs, respectively. The images were
collected from GaoFen, SuperView, and BeiJing-2 satellites

of China, which mainly covered globally distributed rural
areas. This dataset features side-looking satellite images,
which pose a special yet important challenge that requires
the change detector to have sufficient robustness to the reg-
istration error and the object geometric offset caused by
off-nadir imaging angles. Each image of this dataset has a
fixed size of 1,024×1,024 pixels.

A.2. Implementation details for fine-tuning

Fine-tuning on LEVIR-CD. Random flip, rotate, scale jitter,
and cropping into 512×512 are used for training data aug-
mentation. SGD is used as our optimizer, where the weight
decay is 0.0001 and the momentum is 0.9. The total batch
size is 16 and an initially learning rate is 0.03. We train for
200 epochs on train split, as common practices. A “poly”
learning rate policy (γ = 0.9) is applied.
Fine-tuning on S2Looking. Random flip, rotate, scale jitter,
and cropping into 512×512 are used for training data aug-
mentation. SGD is used as our optimizer, where the weight
decay is 0.0001 and the momentum is 0.9. The total batch
size is 16 and an initially learning rate is 0.03. We train for
60k iterations on train split. A “poly” learning rate policy
(γ = 0.9) is applied.
Evaluation metrics. F1 score, precision rate (Prec.), and
recall rate (Rec.) of change regions are used as evaluation
metrics, where F1 score is the main metric.

B. Scalability of Changen
B.1. Scaling up Resolution

Remote sensing images are always of big spatial res-
olutions beyond 256×256 due to the imaging with high
altitudes, e.g., satellite imaging. Therefore, there is a im-
portant requirement that the model trained with 256×256
images can be seamlessly applied to the larger image, e.g.,
1024×1024. It is easy for discriminative fully convolutional
network, however, it is non-trivial for generative models to
bridge the resolution gap. Fig. 1 shows the visual results.
OASIS and Changen are both trained with 256×256 im-
ages. OASIS failed to generate realistic image when given
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Figure 1. Scaling up the resolution to 1024×1024 pixels.
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Figure 2. Feature ℓ2 norm maps. a. the feature norm maps are computed over the pre-event image with Image Encoder of Changen. b.
lower-resolution feature norm maps (OS 32, 16, 8) are computed without pre-event image guidance. c. higher-resolution feature norm maps
(OS 4, 2, 1) are computed with pre-event image guidance. “OS”: output stride.



a 1,024×1,024 semantic mask. Obvious artifacts are ob-
served in background region. Changen still works with this
1024×1024 semantic mask, bridging the resolution gap.

We argue that the main reason why Changen works lies
in the pre-event image guidance. To support our view, we
visualize the feature map of each scale via ℓ2 norm, as shown
in Fig. 2. We train a variant of Changen, which removes
pre-event image guidance in the first three scales (OS 32, 16,
8) and keep pre-event image guidance in the last three scales
(OS 4, 2, 1), to investigate the impact of pre-event image
guidance. From Fig. 2b, we can observe that the feature
norm map of OS 8 is very similar to the image generated
by OASIS in Fig. 1, from the perspective of the background
smoothness. Once applying the pre-event image guidance,
observed from Fig. 2c, the feature norm maps look to have
more details. This visual evidence suggests that the pre-event
image guidance is the key factor in bridging the resolution
gap.

B.2. Scaling up Synthetic Data

We further scale up the synthetic data from 90k to 1.4M,
namely Changen-1.4M, to verify whether data scaling can
improve the model performance. As shown in Table 1, our
synthetic data volume is at the leading edge. Scaling up
Changen-90k to Changen-1.4M, ChangeStar with MiT-B1
further obtains 0.2% F1 improvement, achieving 91.7% F1

on LEVIR-CD. This suggests that data scaling can improve
the model performance.

Table 1. Comparison with other synthetic change datasets

Dataset name Image size (pixels) #Image pairs

AICD [1] 800×600 1k
SynCW [7] 3,072×3,072 4
Changen-90k (ours) 256×256 90k
Changen-1.4M (ours) 256×256 1.4M

Table 2. Data scaling results on LEVIR-CDtest.

Method Pre-train from Backbone F1 ↑ #Params. #Flops

ChangeStar (1×96) ImageNet-1K MiT-B1 90.0 18.4M 16.0G
Ours Changen-90k MiT-B1 91.5(↑1.5) +0
Ours Changen-1.4M MiT-B1 91.7(↑1.7) +0

C. Comparison with other Pre-training Methods

Our Changen is a generative model, which is capable
of synthesizing multi-temporal change data from single-
temporal segmentation data. With synthetic change data
(e.g., Changen-90k) pre-training, the change detector
gains more on the performance, compared to the commonly
used ImageNet-1k supervised pre-training. Here we inves-
tigate the essential effect of Changen pre-training. The po-
tential performance gain may come from (1) less domain

gap between pre-train data and downstream data; (2) se-
mantic segmentation supervision; (3) zero pretext task gap.
(4) higher-quality synthetic change data. We discuss these
factors next.

Table 3. Comparison with other pre-training methods on LEVIR-
CDtest. All entries use ResNet-18 as the backbone. “xView2 pre.”:
xView2 pre-diaster dataset.

Method type Pre-train method Pre-train data F1 ↑
(a) ChangeStar (1×96) classification ImageNet-1K 90.5
(b) + self-supervised SeCo [8] SeCo-1M w/o label 89.9
(c) + self-supervised MoCov2 [3] xView2 pre.w/o label 90.4
(d) + seg. supervised segmentation xView2 pre. 90.6
(e) + synthetic data change detection OASIS-90k 90.6
(f) + Ours change detection Changen-90k 91.1

Factor 1: less domain gap between pre-train data and down-
stream data. The ImageNet-1k belongs to the natural sce-
nario, which has a large domain gap with the Earth obser-
vation scenario. Can any Earth observation data reduce the
domain gap? The result of Table 3(b) gives a negative an-
swer. With a domain-specific self-supervised method (i.e.,
SeCo [8]) and 1 million Sentinel-2 images [4], the trans-
ferred change detection performance is instead reduced by
0.6%F1, compared to ImageNet pre-training. This is be-
cause the spatial resolution of Sentinel-2 optical band is 10
m, while the images of LEVIR-CD has 0.5 m spatial reso-
lution. The resolution gap is a massive barrier to transfer
learning, although the scenario gap has been reduced.

xView2 pre-disaster dataset has sub-meter spatial resolu-
tions close to LEVIR-CD. However, SeCo requires multi-
temporal images as the pre-train data, while xView2 pre-
disaster dataset can not meet that since it is single-temporal
data. Thus, we use MoCo v2 [3] (the baseline of SeCo) to
pre-train the backbone on the xView2 pre-disaster dataset,
which yields 90.4% F1, as Table 3(c) presents. This result
somewhat bridges the resolution gap but is still inferior to
ImageNet pre-training.

Overall, less domain (e.g., scenario, resolution) gap be-
tween pre-train data and downstream data is helpful to trans-
fer the model to the downstream task. However, it is not a
primary gain source of our Changen pre-training.

Factor 2: semantic segmentation supervision. In this case,
Changen is trained using the xView2 pre-disaster dataset,
which is a single-temporal building segmentation dataset.
Therefore, the semantic segmentation supervision provided
by this dataset may be a gain source. We use this seg-
mentation dataset to pre-train the segmentation part of
ChangeStar(1×96)1. This entry yields 90.6% F1, outper-
forming ImageNet pre-training by 0.1% point, as Table 3(d)

1To whom is not familiar with ChangeStar, ChangeStar can be seen as a
segmentation model with a simple change detection head.



presents. This result suggests that the semantic segmentation
supervision is helpful but it is not a primary gain source of
our Changen pre-training.

Factor 3: zero pretext task gap. Our Changen pre-training
belongs to synthetic change data pre-training, and pretext
task is exactly the change detection. Therefore, Changen
pre-training has zero pretext task gap, which is fundamen-
tally different from self-supervised pre-training, ImageNet
pre-training, and segmentation pre-training. To investi-
gate this factor, we use OASIS, our baseline of the gen-
erative model, to synthesize a multi-temporal change dataset
(OASIS-90k) as Changen did. In this way, OASIS pre-
training has also zero pretext task gap, which yields 90.6%
F1, as Table 3(e) presents. This result suggests that zero
pretext task gap is helpful but it is not a primary gain source
of our Changen pre-training.

Factor 4: higher-quality synthetic change data. After ablat-
ing other three factors, the last factor matters. Comparing
Table 3(e) and (f), all variables are strictly controlled ex-
cept the synthetic change data from two different generative
models, i.e., OASIS and Changen. Therefore, we argue that
the higher quality of the synthetic change data is a primary
gain source of our Changen pre-training. Here, higher qual-
ity means better fidelity and diversity of generated images,
which is measured by FID (45.13 vs. 34.74ours, lower is
better) and IS (4.95 vs. 5.41ours, higher is better).

In summary, we find that synthetic change data pre-
training is also a promising approach for remote sensing
change detection. This pre-training features less domain
gap and zero pretext task gap, where the transferability of
pre-trained representation highly depends on the fidelity and
diversity of generated images. Zero pretext task gap means
that the model pre-trained in this way has zero-shot pre-
diction capability, which other pre-training methods (above
discussed) cannot achieve.
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