
3D Implicit Transporter for Temporally Consistent Keypoint Discovery:
Appendix

1. Implementation Details

We implement our models in PyTorch [2] with the
Adam [1] optimizer and a mini-batch size of 10 on 4
NVIDIA A100 GPUs for 45 epochs. A learning rate of
10−4 is used for the first 30 epochs, which is dropped ten
times for the remainder. To increase data diversity, we per-
form random rigid transformation and Gaussian noise for
input point clouds. Perception and manipulation hyper-
parameters are provided in Tab. 1.

Table 1. Perception and manipulation hyper-parameters.
N1 N2 C1/C2/C3/C5/Ce C4 Ch/Cw/Cd λ1/λ2 θthr λ

5000 128 32 256 64 1 0.1 8

Fig. 1 depicts a series of training examples compris-
ing rendered RGB images, accompanied by corresponding
point clouds, for an articulated object with motion in its
constituent parts. It is pertinent to note that solely the ren-
dered point clouds are utilized for training and testing pur-
poses.

2. Ablation Study

Keypoint Parameters Tab. 2 provides the quantitative re-
sults on keypoint parameters. Increasing keypoint num-
ber m and Gaussian variance σ can transport more features
from target to source so that the reconstruction performance
improves. However, few keypoints are enough for objects
with relatively small mobile parts to transport core features.
In this case, the redundant keypoints may scatter on sta-
tionary parts, which could harm pose estimation on mobile
parts. For our training data, m = 6 and σ = 0.15 are the
best choice.

Volume Size We have conducted an ablation study of the
impact of the volume size. The results are reported in Tab. 3.
The higher volumetric resolution of feature grids improves
keypoint detection performance but increases the compu-
tation cost. Therefore, we choose the voxel size of 64 to
balance the memory cost and perception performance.

Table 2. Ablation study of parameters of keypoint network.
m σ RR ↑ ACKD ↓ ADD ↓
5 0.15 0.623 0.130 0.129
6 0.10 0.604 0.136 0.130
6 0.15 0.611 0.120 0.109
6 0.20 0.601 0.128 0.122
7 0.15 0.606 0.125 0.113
8 0.15 0.551 0.141 0.130

Table 3. The impact of volume size.
Ch/Cw/Cd RR ↑ ACKD ↓ ADD ↓

16 0.567 0.147 0.153
32 0.642 0.125 0.123
64 0.611 0.120 0.109

3. Formulation of the Additional Loss
As discussed in the main paper, we incorporate an addi-

tional loss term, Locc s, to facilitate the source frame recon-
struction for better perception results.

Via the volume features Φ(os) of the source frame and
the corresponding query set, the geometry decoder is re-
quired to predict the occupancy of the source frame, which
is written as:

Ω(qe, Φq(os)) → Prob(q|os) (1)

Then, we use the binary cross-entropy loss to assess the
dissimilarity between the decoded and the priori specified
occupancy values by:

Locc s =
1

|Q|
∑
q∈Q

lBCE

(
Prob(q|os),Prob

gt(q|os)
)

(2)

4. Training Efficiency
We compare our training time cost with UMPNET. Fig. 2

presents a comparative analysis of the training time cost re-
quired to achieve the best performance of both UMPNET
and our proposed model, utilizing the same hardware (an
Nvidia A100 GPU). The presented results demonstrate the
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Figure 1. Examples of sequences of training data.

superior efficiency of our 3D Implicit Transporter. Our be-
lief is that this can be attributed to the more efficient nature
of sparse keypoint learning as opposed to dense affordance
prediction.

5. Qualitative Results
Keypoint Consistency We show more qualitative results
on keypoint temporal consistency between the same in-
stance with different articulated states in Fig. 4. It can be
seen that our method can generate more consistent key-

points than other baselines in both revolute and prismatic
joints. We also provide visualizations of real objects in
Fig. 6. Since the real depth image often contains arti-
facts caused by occlusions, depth discontinuities, or mul-
tiple reflections, we adopt the filter method as [3] used to
fill holes in depth image and smooth depth values. Never-
theless, the point clouds may still be incomplete. Despite
these artifacts, our method can generally detect spatiotem-
porally consistent keypoints. We believe the reason is that
the implicit geometry decoder can represent the surface oc-



Figure 2. The training time (in hours) required to achieve the best
performance of both UMPNET and ours.

Source

(a) (b)

Target Target

Target

Figure 3. Surface shape reconstruction. (a) Target shape recon-
struction from transported source features and target features, re-
spectively. (b) Reconstruction results of unseen categories.

cupancy in each continuous input query point, which is ro-
bust to the density variation of point clouds. More intuitive
performance can be found in the supplementary video.

Implicit Reconstruction Fig. 3-(a) shows the surface re-
construction of the target input, which is based on the trans-
ported feature from the source. It demonstrates the effec-
tiveness of the feature transporter and the implicit geometry
decoder. Fig. 3-(b) provides more reconstruction results of
unseen test categories.

Goal-conditioned Manipulation As shown in Fig. 5
(simulation) and Fig. 7 (real scene), we show visualizations
of the closed-loop policy taken to interact with articulated
objects from their initial to goal states. More qualitative
results in simulated and real scenes can be found in the sup-
plementary video.

6. Failure Cases
If the number of points of the mobile part is too small,

it is difficult for our method to detect accurate keypoints.
Moreover, our manipulation strategy fails when the attached
keypoint is not on the object’s surface, like the point in the
drawer.
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Figure 4. Keypoint temporal consistency comparison for both revolute and prismatic joints.
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Figure 5. Visualizations of our closed-loop policy for manipulating articulated objects from initial to target states.
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Figure 6. Keypoint consistency of real objects. The input point clouds are cropped by the human labeled bounding box in the first frame of
an object video.
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Figure 7. Qualitative results on real object manipulation.
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