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1. Details about Body-Part Attention

Firstly, we divide the human body with n joints into
five body parts: {Torso, Left Arm, Right Arm, Left Leg,
Right Leg}, each containing its own set of joints(seeing
Figure. 1). In order to apply the transformer in the spa-
tial dimension, we rearrange the motion representation of
T2M [2]. The original representation of each frame is
x; = {ro, 7% 7% Y, 5P, 5V, 57, ¢!}, representing root an-
gular velocity along Y-axis, root linear velocities on XZ-
plane, root height, local joints positions, velocities, 6D ro-
tations [5], and foot ground contacts, respectively.
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Figure 1. Body-part segmentation on HumanML3D

To gather information from each joint, the new
motion representation of the root joint is Jroor =
{re,7*, 7% rY j° .}, and the motion representation of
other joints is j; = {4, j¥, jI'}. Specifically, to handle the
foot sliding problem, we also treat the foot contact feature as
an additional joint of the human body and incorporate it into
the attention computation. Therefore, the new motion repre-
sentation of each frame is Z; = {Jroots J15 J2; s Jn_1,¢ }.
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Figure 2. Body-part attention

According to this division, we define a new human adja-
cency mask M = {m; ;} € RFDO+D) If joint i and j
are in the body part, m; ; = 0, otherwise —oo. The body-
part attention is calculated as described in our paper.

To more intuitively show the effectiveness of this part,
we selected four frames from a generated motion generated
by the text "a person walking in a circle counterclockwise”.
We visualized the attention of the inner part of the right leg,
indicated by the red leg in the skeleton in Figure 2. In the
first frame, the person’s right leg is bent, preparing to extend
forward, and the knee plays an important role, so the weight
of the knee is the highest. In the second frame, the right foot
is just about to leave the ground, and the weight is highest
at the foot position. In the third frame, the entire right leg is
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a man takes several steps backward

a person kicking right leg and then
kicking left out in front of them

2

the person hopped a big step to the left

the man is doing starjumps

walking up stairs then down

a person raises both arms towards their
face and pushes one leg up and out

a person steps backwards and
sits down, then stands back up

a person is squatting down

Figure 3. More visualization results.

in an upright state, and the weight distribution is relatively
even. In the fourth frame, the right leg just landed, and the
weight is relatively high on both the ankle and the slightly
bent knee. From the visualization of the attention mecha-
nism, we can see that our body-part attention well consid-
ers the mutual influence of different joints within the body
part when extracting spatial features, which can fully adapt
to the spatial structure of the human body. This makes our
extracted spatial feature expression ability strong and helps
us learn a better discrete motion latent space.

2. Details about Implementation

Our code will be released to the public if our submission
is accepted.

The size of the code book used in VQVAE is 512 x 512,
with 2 layers of Transey., a feature dimension of 128,
and 4 heads of multi-head attention. The feature motion
compression rate [,, is 4, and the parameters « and /3 in
the loss function are set to 0.5 and 1, respectively. During
the training of VQVAE, we fix the input length at 64. We
use AdamW as the optimizer, with the [51, 82| settings at
[0.9,0.99] and a batch size of 256. We iterate 300K times
on a single GTX 3090Ti graphics card, with a learning rate
of 2e-4 for the first 200K iterations, and a learning rate of

le-5 for the remaining 100K iterations.

During the training of GLAGT, the T'rans;,¢q; has 2 lay-
ers, a feature dimension of 1024, and 8 heads of multi-head
attention. The T'ransgope has 9 layers, a feature dimen-
sion of 1024, and 16 heads of multi-head attention. The
Transgey, has 9 layers, a feature dimension of 1024, and
16 heads of multi-head attention. We fix the input length at
50. We use AdamW as the optimizer, with the [S1, 2] set-
tings at [0.5,0.99] and a batch size of 128. We iterate Hu-
manML3D 270K times on a single GTX 3090Ti and 290K
for KIT-ML, with a learning rate of le-4 for the first 150K
iterations, and a learning rate of 5e-6 for the rest.

3. More Visualization Results

Here we give more visualization results in Figure. 3 to
show the quality of the motion generated by our method.
More Video results are in supplemental video.
4. Details about Datasets and Metrics

Here we demonstrate more details about datasets and
metrics. Most of these introductions come from T2M [2].
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4.1. Datasets

KIT Motion-Language [4] is the first 3D human motion
dataset with text labels, consisting of a subset of KIT [3] and
CMU [1] datasets. It contains 3911 motion sequences and
6353 sequence-level text annotations, with an average of 9.5
words per annotation. The motions are scaled to 12.5 FPS,
and each motion sequence has 1 to 4 text descriptions, with
an average length of 8§ words. We adopt the same data split
as T2M, where 80% is used for training, 5% for validation,
and 15% for testing.

HumanML3D [2]: HumanML3D added detailed text
labels to the motion in AMASS dataset, creating a motion-
language dataset. It contains 14616 motion segments with
a total duration of 28.59 hours. The average length of per
segment is 7.1 seconds, and the longest and shortest mo-
tions are 10 and 2 seconds, respectively. The dataset con-
tains 44970 text descriptions with an average length of 12
words, covering 5317 unique words. The motions are scaled
to 20 FPS, and motions longer than 10 seconds are ran-
domly split into 10-second segments. All motion data is
aligned to a common default skeleton and the initial orien-
tation is rotated to face the positive Z-axis. The dataset is
split into training, validation, and test sets, We follow the
split of T2M [2] for our training, validation, and testing on
both KIT-ML and HumanML3D.

4.2. Metrics

Frechet Inception Distance (FID): We use the feature
extraction module provided by the T2M authors to extract
features from the real data in the test set, as well as from
the motion generated by our method. We then calculate the
FID between these two feature distributions. A smaller FID
indicates that the generated motion is closer to real data.

R-precision: For each generated motion, we assign one
real text description and 31 randomly selected text descrip-
tions that do not match it. We then calculate the distance
between the motion feature and the 32 text features, sort
them in ascending order, repeat this process 32 times, and
calculate the probabilities of the real text description rank-
ing at the top 1, 2, and 3. A higher probability indicates
better retrieval results.

MultiModal distance(MM-D): For each generated mo-
tion, we extract the motion feature and the corresponding
text feature, and then calculate the Euclidean distance be-
tween these two features. A smaller distance indicates a
better match between motion and text.

Diversity(Div): We randomly select two subsets of 300
motions from the generated motions. We then extract the
motion features for each subset and calculate the mean Eu-
clidean distance between the corresponding motions in the
two subsets. This metric measures the diversity of all gen-
erated motions, with a larger mean indicating greater differ-
ences between different subsets and better diversity.

MultiModality(MM): Given C text descriptions, we
generate 20 motion data for each text description and ran-
domly divide them into two subsets of 10. We then cal-
culate the difference in distance between the two subsets in
the same way as Diversity and take the average of the results
for C text descriptions. This metric measures the diversity
of the motions generated for the same text description, with
a larger distance indicating better diversity.
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