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A. Additional Results
A.1. Variance of pre-training results

We repeat MoCo-v2 on the original CIFAR-10 200ep
three times: The KNN evaluation mean and std is 82.44 ±
0.18. Repeating MoCo-v2 on the global 8x8 shuffling
corrupted CIFAR-10 gives KNN evaluation mean and std
59.24± 0.40. The linear evaluation variance is similar. The
randomness has a smaller order than the gap between MoCo
and Sup results.

A.2. Analysis of the feature space

In addition to feature uniformity, we also utilize feature
distance to evaluate the learning dynamics of CL and SL.
Denoting Di and Dj as feature matrices of two classes,
the feature distance is calculated as: d(ft,Di,Dj) =
Ex0∼Di,x1∼Dj

[
∥ft(x0)− ft(x1)∥22

]
. Note that if Di =

Dj , it actually measures the intra-class variance of class i.
We plot curves of feature distance in Figure A.1. We are
also interested in SupCon, because it bridges CL and SL
by leveraging a similar contrastive loss. As illustrated, the
overall feature uniformity of MoCo-v2 [1] is greater than
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Figure A.1: Above: Solid black line – uniformity of the overall
feature space. Dashed lines – class-wise feature uniformities of
the 10 classes. While the overall uniformity of all methods grows,
the uniformity of each class of Sup or SupCon is shrinking as train-
ing progresses. In the end, the overall uniformity of MoCo is the
largest. Below: Solid black line – d(ft,D0,D0), i.e., the intra-
class variance of class 0. Dashed lines – feature distances between
Di(i ̸= 0) and D0. The intra-class variance behavior of MoCo
(increasing) is the opposite to that of Sup or SupCon (decreasing).
2.5 and approaching 3, while the overall uniformity of su-
pervised contrastive learning (SupCon) [2] and supervised
methods range from 1.25 to 2.2. This means that features
from CL methods are more uniformly distributed on the unit
sphere, or captures more information.

By looking at the class-wise feature uniformity, we no-
tice that SL tends to compress (and maybe over-compress)
the features of each class, while CL steadily increases the
overall and class-wise uniformity. SupCon has the small-
est uniformity values and similar patterns with SL due to
the same way of supervision, and the class-wsie uniformity
stabilizes with longer training. We hypothesize that such
dynamics is related to its contrastive objectives. By looking
at the feature distance, we can observe the similar trends
for overall and class-wise measurements. While CL has
a steadily increasing overall intra-class variance and class-
wise feature distance w.r.t class 0, SupCon and SL have a
shrinking overall intra-class variance and increasing class-
wise feature distance. On the other hand, SupCon has a
similar class-wise dynamics as that of CL in the sense of
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stable class-wise relations: the differences between classes
stabilize with time, while those of SL approach to a closer
range.

B. Additional Visualization

B.1. Visualizing Grad-CAM attention maps

Figure 2 in our main paper visualizes the Grad-CAM
[3] attention maps of ResNet-18 models pre-trained and
linearly fine-tuned on either uncorrupted or global patch-
shuffled images.

To further understand qualitatively how different corrup-
tion strategies impact the model’s ability to learn semantic
concepts, we draw the CAMs of models trained under dif-
ferent corruption settings on the corrupted versions of two
ImageNet validation images in Figures B.1 and B.2. Global
shuffling and defocus blur especially hinder the ability of
MoCo to learn meaningful semantics.

B.2. Visualizing corrupted images

Please check Figure B.3 for more visual examples of the
pixel-level gamma distortion and patch-level shuffling cor-
ruptions we used.

C. Using Uniformity As Performance Estima-
tion Metrics

[5] derives uniformity from contrastive loss and shows
that improving uniformity helps minimize contrastive loss
(thus higher accuracy). As their proof does not rely on spe-
cific assumptions about data cleanliness, we hypothesize
that such relationship extends to scenarios where images
have spatial corruptions. Note, as uniformity is a metric
derived specifically from the CL objective, there may not
be an explicit relationship with SL.

We present uniformity scores of pre-trained models with
data from another domain in the table below. We observe
within the same type of corruption (global or local shuf-
fling), higher uniformity implies higher accuracy. A com-
prehensive investigation on utilizing uniformity as metric in
various scenarios is beyond the scope of this paper, and we
leave it as interesting future work.

Regarding other calibration metrics, we pick E.C.E [4]
and it does not show a clear relationship with model perfor-
mance (Table C.1), indicating identifying a good metric is
non-trivial.

D. Limitations

In this paper, we aim to observe, define, and analyze the
dependency of CL on spatial inductive bias. We regard such
dependency an intrinsic property of CL, rather than a weak-
ness, constraint, or issue that needs to be solved or miti-

gated. Therefore, we did not propose a workaround or a
new method to decrease such dependency.

This paper mainly focuses on CL methods among all
SSLs. It remains an interesting future work to investigate
the dependency of such inductive biases in non-CL SSLs.
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Table C.1: Experiments shows that E.C.E. does not work as a performance estimation indicator like uniformity.
Item Ori / G.1 Glo.4 Glo.8 G.32 / L.1 Loc.4 Loc.8 L.32 / Ori.
Acc. 96.80 89.60 (7.4%↓) 81.50 (15.8%↓) 29.44 (69.6%↓) 77.40 (20.0%↓) 89.40 (7.6%↓) 96.80
Uni. 2.59 2.16 (16.6%↓) 2.11 (18.3%↓) 2.10 (19.0%↓) 2.13 (17.8%↓) 2.18 (15.8%↓) 2.59
E.C.E. 1.97 2.80 (42.1%↑) 0.06 (97.0%↓) 1.18 (40.1%↓) 0.69 (65.0%↓) 1.64 (16.8%↓) 1.97
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Figure B.1: GradCAM on corrupted versions of a dog image of
sup/MoCo models trained under 7 corruptions.
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Figure B.2: GradCAM on corrupted versions of a bird image of
sup/MoCo models trained under 7 corruptions.
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Figure B.3: Randomly chosen examples from the STL-10 dataset. The original images have resolution 96x96. We show the resulting
images of gamma distortion (γ = 0.2, 2.5), global patch shuffling, and local patch shuffling. G1x1 and L96x96 revert to the original, while
G96x96 and L1x1 are the most random ones (and have similar effect). Gamma distortion reduces information in pixel intensity. Global
shuffling destroys global but preserves local structure, while local shuffling is the opposite.


