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1. Training strategy
All models in the paper are implemented using

Pytorch[4] on a single NVIDIA A100 GPU. The initial
learning is set to be 1e−3 and decayed following a cosine
restart learning scheduler[3]. We use AdamW optimizer
during the training. We show the other training-related hy-
perparameters for each dataset in Table 1.

Dataset Restart Period Batch Size Total Epoch
UCF Sports 100 4 300

KTH 50 16 150
MNIST 1000 32 3000

Table 1: Training configuration for each dataset in the paper.

2. Framework Implementation
This section we demonstrate the inner structure of each

module that we adopted for MMVP implementation in this
work. MMVP contains three major steps: i) feature extrac-
tion, which includes an image encoder and a filter block,
see Figure 1; ii) motion matrix construction and prediction,
see Figure 2; and iii) Future composition and decoding, see
Figure 3. We will apply a softmax operation to every M
before they take part in the future composition step.

Figure 1: Spatial feature extraction.

For the experiments on each dataset, the implementa-
tions all follow the structures shown in Figure 1, 2, and

Figure 2: Motion matrix construction and prediction.

Figure 3: Future composition and decoding.
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3. However, there are three hyperparameters that are differ-
ent when implementing the models for different datasets: i)
Cimg , the base channel of the image encoder & decoder;
ii) Cmotion, the base channel of the matrix predictor and
iii) the down-sample ratio S between the hidden features
and the original image. When selecting the two base chan-
nel numbers, we consider the video resolution, the com-
plexity of the motion patterns, and the length of the future
frames. For most cases, when video resolution is higher,
or the images are more informative, C should be set to a
larger number; when the motion pattern is more complex
or the prediction length is longer, Cmotion should be larger.
Here we show the Cimg and Cmotion for each dataset in
Tab. 2. Interestingly, it is easy to note that the model we use
on Moving-MNIST consists of the largest parameter num-
bers among the three datasets while Moving-MNIST is a
single channel image with only digit numbers. One rea-
son is that the motion pattern of Moving-MNIST has the
least constraints among the three, the two digits are bounc-
ing everywhere on the image, which requires the model to
have a larger capacity. We will release the code and the
pre-trained models later. In MMVP paper, we choose not
to exhaustively search for the optimal combination of the
hyper-parameters for each dataset setting or the best net-
work architecture for the image encoder, decoder, and ma-
trix predictor. One may modify our code and achieve better
results than what we showcase in the paper.

Dataset Resolution Future length Cimg Cmotion S Param #
UCF Sports 512× 512 1 32 8 8 2.8M

KTH 128× 128 20 16 96 4 4.5M
KTH 128× 128 40 16 96 4 6.1M

MNIST 64× 64 10 32 192 4 14.6M

Table 2: Hyper-parameters in the MMVP implementation
for different datasets.

When running the experiments on our splits of UCF
sports dataset using SimVP[2] and STIP[1], we strictly fol-
low the hyper-parameters released in their official code. Es-
pecially, for STIP, we directly copy their hyper-parameters
on the UCF Sports dataset.

3. Extensive Visualization
3.1. UCF Sports Validation subset

In the paper, we have mentioned that we notice that even
within the same validation set, the difficulty level of dif-
ferent samples varies a lot. Some video clips only contain
static backgrounds and slow-moving objects while others
include drastic camera movement or fast-moving objects.
To better understand the model’s prediction ability for dif-
ferent scenarios, we use certain thresholds of the structural
similarity index measure (SSIM) between the last observed

frame and the first future frame to divide the UCF Sports
validation set into three subsets: the easy (SSIM ≤ 0.9),
intermediate, hard subsets (SSIM < 0.6), which take 66%,
26%, and 8% of the full set respectively.

Here we showcase two examples from each subset in
Figure 4. We can see that for the samples belonging to the
easy subset, the difference between the last observed frame
IT and the first future frame IT+1 is very minor, which
turns the video prediction task into a signal processing or
image reconstruction task (especially for the second sam-
ple). Methods that rely too much on the feature shortcuts
from the previous methods will have leading performances.
Comparing the second sample in the intermediate subset
and the first sample in the hard subset, we can clearly ob-
serve that the sample in the hard subset may contain more
camera movement, which is more challenging for the video
prediction system.

3.2. Motion Matrix Sequence

In this section, we visualize the motion sequences that
are input to the matrix predictor and their corresponding
output (See Figure 5). Specifically, in KTH, we demon-
strate what the output will be like if it is a sequence of ma-
trices. From the visualization we have two observations: i)
For long-term prediction in KTH, the highlighted area of
the selected matrix can still fall in the correct region; ii) the
heatmap of the matrix describes the layout of each frame,
and the basic shapes of the objects in the video. Further-
more, it can be regarded as a semantic segmentation map
while the sequence of the matrices reflects the changing
pattern of the semantic meaning. All those information pro-
vides essential hints for motion prediction.

3.3. Extra Qualitative Results

In this section, we show the qualitative results for the
other two datasets: Moving-MNIST (Fig. 6) and KTH (Fig.
7
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Figure 4: Samples from different subsets of the validation set in UCF Sports. The last column is the overlay of the last
observed frame IT and the first future frame IT+1.
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Figure 5: Visualization of the motion matrices. We selected one patch for each video sequence at (h,w) and visualize its
corresponding sequence of the matrices as well as the predicted matrices output by the matrix predictor. The selected patch
is red in the UCF Sports data sample and white in the KTH data sample.
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Figure 6: Qualitative results for Moving-MNIST. The upper row of each sample shows the ground truth for 10 future frames
and the lower row is the output of MMVP.

Figure 7: Qualitative results for KTH. The upper row of each sample shows the ground truth for 20 future frames and the
lower row is the output of MMVP.
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