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A. Review of SurfEMB
Our noise model on RGB information build on SurfEMB [1] which learns neural embeddings to establish dense 2D-3D

correspondences via contrastive learning. For each object class t ∈ {1, · · · ,M}, SurfEMB learns a pair of neural networks:
the query model ft : {0, · · · , 255}H×W×3 7→ RH×W×E and the key model gt : R3 7→ RE . The query model transforms
an observed RGB image I into query embeddings Qt, while the key model transforms a rendered object coordinate image X̃
into a set of key embeddings.

For a given 2D pixel location on the observed image with query embedding q, SurfEMB specifies a surface correspondence
distribution PRGB(gt(x̃)|q, t) ∝ exp(qT gt(x̃)) for each object class t. To normalize this surface correspondence distribution,
for each object class t, we subsample uniformly across the object’s surface to get a set Zt of surface 3D coordinates in object
frame. Then, given a pixel with query embedding q, we calculate the probability that this pixel corresponds to a surface point
x̃ ∈ Zt on object class t as:

PRGB(gt(x̃)|q, Zt, t) =
exp(qT gt(x̃))∑

x∈Zt
exp(qT gt(x))

(1)

B. More details on the energy-based formulation of 3DNEL
B.1. Existence of the normalization constant for the energy-based formulation

Since we are working with an energy-based formulation (Equation (1)), to make the probability distribution properly
defined we need to make sure the normalization constant, i.e. the sum of the energy function over all I and C

∑
I

∫
C

∏
c

(
ϵPBG(c;B) +

1− ϵ

K̃

∑
c̃:s̃>0

Pdepth(c|c̃; r)PRGB(gs̃(x̃)|qs̃, s̃)

)

is finite and well-defined. For RGB images of size H×W , since each pixel has only 256 values, there are at most 256H×W×3

RGB images of size H×W which is a finite number. Since the value of the energy function is less than 1 for any given I and
C, summing over a finite number of I and integrating over a bounded region for C gives us a finite normalization constant,
making the probability distribution well-defined.

*Equal contribution



B.2. JAX-based implementation of 3DNEL evaluation given rendering outputs

Given rendering outputs from OpenGL, we use JAX to develop a 3DNEL evaluation implementation that can run effi-
ciently on modern GPUs. The implementation can be easily combined with jax.vmap to support 3DNEL evaluation of
hundreds of 3D scene descriptions in parallel.

1 # Copyright 2023 DeepMind Technologies Limited
2 # Copyright 2023 Massachusetts Institute of Technology (M.I.T.)
3 # SPDX-License-Identifier: Apache-2.0
4 @functools.partial(jax.jit, static_argnames="filter_shape")
5 def neural_embedding_likelihood(
6 data_xyz: jnp.ndarray,
7 query_embeddings: jnp.ndarray,
8 log_normalizers: jnp.ndarray,
9 model_xyz: jnp.ndarray,

10 key_embeddings: jnp.ndarray,
11 model_mask: jnp.ndarray,
12 obj_ids: jnp.ndarray,
13 data_mask: jnp.ndarray,
14 r: float,
15 p_background: float,
16 p_foreground: float,
17 filter_shape: Tuple[int, int],
18 ):
19 """
20 Args:
21 data_xyz: Array of shape (H, W, 3). Observed point cloud organized as an image.
22 query_embeddings: Array of shape (H, W, n_objs, d).
23 Query embeddings for each observed pixel using models from different objects.
24 log_normalizers: Array of shape (H, W, n_objs).
25 The log normalizers for each pixel given each object model
26 model_xyz: Array of shape (H, W, 3). Rendered point cloud organized as an image.
27 key_embeddings: Array of shape (H, W, d). Key embeddings organized as an image.
28 model_mask: Array of shape (H, W). Mask indicating relevant pixels from rendering.
29 obj_ids: Array of shape (H, W). The object id of each pixel.
30 data_mask: Array of shape (H, W). Mask indicating the relevant set of pixels.
31 r: Radius of the ball.
32 p_background: background probability.
33 p_foreground: foreground probability.
34 filter_shape: used to restrict likelihood evaluation to a 2D neighborhood.
35 """
36 obj_ids = jnp.round(obj_ids).astype(jnp.int32)
37 padding = [
38 (filter_shape[ii] // 2, filter_shape[ii] - filter_shape[ii] // 2 - 1)
39 for ii in range(len(filter_shape))
40 ]
41 model_xyz_padded = jnp.pad(model_xyz, pad_width=padding + [(0, 0)])
42 key_embeddings_padded = jnp.pad(key_embeddings, pad_width=padding + [(0, 0)])
43 model_mask_padded = jnp.pad(model_mask, pad_width=padding)
44 obj_ids_padded = jnp.pad(obj_ids, pad_width=padding)
45

46 @functools.partial(
47 jnp.vectorize,
48 signature=’(m),(n),(o,d),(o)->()’,
49 )
50 def log_likelihood_for_pixel(
51 ij: jnp.ndarray,
52 data_xyz_for_pixel: jnp.ndarray,
53 query_embeddings_for_pixel: jnp.ndarray,
54 log_normalizers_for_pixel: jnp.ndarray,
55 ):
56 """
57 Args:
58 ij: Array of shape (2,). The i, j index of the pixel.
59 """
60 model_xyz_patch = jax.lax.dynamic_slice(
61 model_xyz_padded,



62 jnp.array([ij[0], ij[1], 0]),
63 (filter_shape[0], filter_shape[1], 3),
64 )
65 key_embeddings_patch = jax.lax.dynamic_slice(
66 key_embeddings_padded,
67 jnp.array([ij[0], ij[1], 0]),
68 (filter_shape[0], filter_shape[1], key_embeddings.shape[-1]),
69 )
70 model_mask_patch = jax.lax.dynamic_slice(model_mask_padded, ij, filter_shape)
71 obj_ids_patch = jax.lax.dynamic_slice(obj_ids_padded, ij, filter_shape)
72 log_prob_correspondence = (
73 jnp.sum(
74 query_embeddings_for_pixel[obj_ids_patch] * key_embeddings_patch,
75 axis=-1,
76 ) - log_normalizers_for_pixel[obj_ids_patch]
77 ).ravel()
78 distance = jnp.linalg.norm(
79 data_xyz_for_pixel - model_xyz_patch, axis=-1
80 ).ravel()
81 a = jnp.concatenate([jnp.zeros(1), log_prob_correspondence])
82 b = jnp.concatenate(
83 [
84 jnp.array([p_background]),
85 jnp.where(
86 jnp.logical_and(distance <= r, model_mask_patch.ravel() > 0),
87 3 * p_foreground / (4 * jnp.pi * r**3),
88 0.0,
89 ),
90 ]
91 )
92 log_mixture_prob = logsumexp(a=a, b=b)
93 return log_mixture_prob
94

95 log_mixture_prob = log_likelihood_for_pixel(
96 jnp.moveaxis(jnp.mgrid[: data_xyz.shape[0], : data_xyz.shape[1]], 0, -1),
97 data_xyz,
98 query_embeddings,
99 log_normalizers,

100 )
101 return jnp.sum(jnp.where(data_mask, log_mixture_prob, 0.0))

C. Details on coarse enumerative pose hypotheses generation
C.1. Formal description of the coarse enumerative pose hypotheses generation process

We develop a novel spherical voting procedure and a heuristic scoring using the query embeddings and observed point
cloud image C defined in Section 3.2, and use them in an enumerative procedure to efficiently generate pose hypotheses.
We use the object center and nk points sampled using farthest point sampling from the object surface as our keypoints, and
discretize the camera frame space into a Lx × Ly × Lz voxel grid .

For a given keypoint, our spherical voting procedure aggregates information from the entire image to score how likely the
keypoint is present at different voxel locations, and stores the scores in a voxel grid. Figure 1(a) visualizes spherical voting
for the center x∗ of the mug object: for pixel location (i, j) with camera frame coordinate c ∈ R3 and query embedding
q ∈ RE , we identify its most likely corresponding point on the mug surface x = argmaxx̃ PRGB(gt(x̃)|q, t), calculate the
distance rx = ||x − x∗||2 from x to x∗ in the object frame, and cast votes [3] with weight pi,j = maxx̃ PRGB(gt(x̃)|q, t)
towards all points on a sphere of radius rx centered at c. Figure 1(b) visualizes the 20 top-scoring voxels from the voxel grid
for the mug center, and Figure 1(c) visualizes the 20 top-scoring voxels from the voxel grids for the nk keypoints on the mug
surface.

We coarsely discretize the object pose space. We reuse the same camera frame space discretization into a voxel grid, and
use the Lx × Ly × Lz voxel centers to discretize the location space. We use a customized procedure (Appendix C.3) to
generate nr rotations and discretize the rotation space. We use the voxel grid for the object center to identify top-scoring
object locations, and score all nr rotations at these locations. We score a given object pose with the sum of the scores of the
voxels the corresponding nk keypoints fall into. Figure 1(d) visualizes 3 example top pose hypotheses from the enumerative



Figure 1. Coarse Enumerative Pose Hypotheses Generation We visualize our coarse enumerative pose hypotheses generation process
using a mug object as an example. Figure 1(a) visualizes spherical voting for identifying the mug center. The red points in the observed
point cloud represent points associated with the mug. The 3 colored spheres illustrate how votes from points on the mug combine to
identify the mug center. The same procedure can also be used to identify the nk keypoints on the mug surface. Figure 1(b) visualizes 20
top-scoring voxels from the voxel grid associated with the mug center. Figure 1(c) visualizes 20 top-scoring voxels from the voxel grids
associated with the nk keypoints. Figure 1(d) show how we score pose hypotheses by summing the scores of the voxels the corresponding
nk keypoints fall into. The scores of the poses hypotheses decrease as we go from left to right. In Figures 1(b) to (d), light yellow
represents low voxel scores, while dark red represents high voxel scores.

procedure. Figure 1(e) visualizes how poses far away from ground truth get low scores from our heuristic scoring.
In Algorithm 1 we present a detailed description of our coarse enumerative pose hypotheses generation process. In practice

we also optionally apply non-max suppression in the TopPositions function in the algorithm to make sure the promising
positions we identify are well spread out to cover different parts of the image and better represent uncertainty.

C.2. Taichi-based spherical voting

We use Taichi [2] to develop a spherical voting implementation that can run efficiently on modern GPUs.

1 # Copyright 2023 DeepMind Technologies Limited
2 # Copyright 2023 Massachusetts Institute of Technology (M.I.T.)
3 # SPDX-License-Identifier: Apache-2.0
4

5 @ti.kernel
6 def taichi_spherical_vote(
7 centers: ti.types.ndarray(element_dim=1),
8 radiuses: ti.types.ndarray(),
9 weights: ti.types.ndarray(),

10 voxel_grid: ti.types.ndarray(),
11 voxel_grid_start: ti.types.ndarray(element_dim=1),
12 voxel_diameter: float,
13 multipliers: ti.types.ndarray(),
14 ):
15 """
16 Args:
17 centers: Array of shape (batch_size, n_centers, 3,). Coordinates of the centers of the spheres.
18 radiusss: Array of shape (batch_size, n_centers). Radiuses of the spheres.
19 weights: Array of shape (batch_size, n_centers,). Weights of votes from the spheres.
20 voxel_grid: Array of shape voxel_grid_shape
21 voxel_grid_start: Array of shape (3,). Coordinate of the center of voxel (0, 0, 0)
22 voxel_diameter: float. Diameter of a voxel.
23 multipliers: fixed length-2 1D array with elements 1.0, -1.0
24 """
25 for voxel in ti.grouped(voxel_grid):
26 voxel_grid[voxel] = 0.0
27



Algorithm 1: Coarse Enumerative Pose Hypotheses Generation

/* Basic setups */
Object-specific: A set of surface points Zt for object class t, query model ft, key model gt, nk keypoints with object

frame coordinates x∗
1, · · · , x∗

nk
∈ R3.

Spatial discretization: Camera frame coordinates of the center of the boundary voxel y ∈ R3, size of the voxel grid
(Lx, Ly, Lz), diameter of the voxels d > 0.

Orientation discretization: nr representative orientations R1, · · · ,Rnr ∈ SO(3).
Parameters: Number of pose hypotheses to generate np, number of top positions nt.

1

/* Coarse Enumerative pose hypotheses generation */
Input: RGB image I ∈ RH×W×3, observed point cloud C ∈ RH×W×3.
Output: Top scoring pose hypotheses Pt

1, · · · ,Pt
np
∈ SE(3).

2 Q← ft(I); // Get query embeddings Q ∈ RH×W×E from the RGB image I
3 V0 ← Voting (Q,C, (0, 0, 0)); // Aggregation for object center (0, 0, 0)
4 for i← 1 to nk do // Aggregation for nk keypoints.
5 Vi ← Voting (Q,C, x∗

i ); // Vi ∈ RLx×Ly×Lz

/* Identify top positions based on V0’s largest entires. */
6 l1, · · · , lnt

← TopPositions (V0); // l1, · · · , lnt
∈ R3

7 for i← 1 to nt, j ← 1 to nr do
8 si,j ← Scoring (li,Rj ,V

1, · · · ,Vnk ); // Heuristic pose scoring

9 Pt
1, · · · ,Pt

np
← RankByScore (l1, · · · , lnt

, si,j , i = 1, · · · , nt, j = 1, · · · , nr);
10 return Pt

1, · · · ,Pt
np

;
11

/* Voting and heuristic scoring */
12 def Voting (Q,C, x∗) // Voting-based evidence aggregation
13 V← 0; // Initialize V ∈ RLx×Ly×Lz to all 0 array
14 for i← 1 to H , j ← 1 to W do
15 x← argmaxx̃ PRGB(x̃|Qi,j , Zt, t), pi,j ← maxx̃ PRGB(x̃|Qi,j , Zt, t);
16 for u← 1 to Lx, v ← 1 to Ly , w ← 1 to Lz do
17 c← (y1 + (u− 1)d, y2 + (v − 1)d, y3 + (w − 1)d);
18 if ||Ci,j − c||2 ≈ ||x− x∗||2 then
19 Vu,v,w = Vu,v,w + pi,j

20 return V

21 def Scoring (l,R,V1, · · · ,Vnk ) // Heuristic pose scoring
22 s← 0; // Initialize score to 0
23 for i← 1 to nk do
24 x← Rx∗

i + l; // Location of x∗
i in world frame for pose l,R

25 (u, v, w)← Round[(x− y)/d]; // Identify corresponding voxel of x
26 s = s+Vi

u,v,w; // Heuristic scoring

27 return s

28 for ii, jj in centers:
29 center_on_voxel_grid = (
30 centers[ii, jj] - voxel_grid_start[None]
31 ) / voxel_diameter
32 center_on_voxel_grid = ti.round(center_on_voxel_grid)
33 radius_in_voxels = radiuses[ii, jj] / voxel_diameter + 0.5
34 for x in range(ti.ceil(radius_in_voxels)):
35 for y in range(ti.ceil(ti.sqrt(radius_in_voxels**2 - x**2))):
36 z_range = (



37 ti.ceil(
38 ti.sqrt(
39 ti.max(
40 0.0,
41 (radiuses[ii, jj] / voxel_diameter - 0.5) ** 2
42 - x**2
43 - y**2,
44 )
45 )
46 ),
47 ti.ceil(ti.sqrt(radius_in_voxels**2 - x**2 - y**2)),
48 )
49 for z in range(z_range[0], z_range[1]):
50 for xx in range(2):
51 if x == 0 and multipliers[xx] < 0:
52 continue
53

54 x_coord = ti.cast(
55 center_on_voxel_grid[0] + multipliers[xx] * x,
56 ti.i32,
57 )
58 if x_coord < 0 or x_coord >= voxel_grid.shape[1]:
59 continue
60

61 for yy in range(2):
62 if y == 0 and multipliers[yy] < 0:
63 continue
64

65 y_coord = ti.cast(
66 center_on_voxel_grid[1] + multipliers[yy] * y,
67 ti.i32,
68 )
69 if y_coord < 0 or y_coord >= voxel_grid.shape[2]:
70 continue
71

72 for zz in range(2):
73 if z == 0 and multipliers[zz] < 0:
74 continue
75

76 z_coord = ti.cast(
77 center_on_voxel_grid[2] + multipliers[zz] * z,
78 ti.i32,
79 )
80 if z_coord < 0 or z_coord >= voxel_grid.shape[3]:
81 continue
82

83 ti.atomic_add(
84 voxel_grid[ii, x_coord, y_coord, z_coord],
85 weights[ii, jj],
86 )

C.3. Discretizing the rotation space

We discretize SO(3) into 6400 representative orientations. We generate these orientations by first picking 200 points
roughly uniformly on the unit sphere using the Fibonacci sphere. The 6400 representative orientations are genearted by first
rotating the axis (0, 0, 1.0) to point to one of the 200 points, followed by one of 32 in-plane rotations around the axis.

D. Details on inference pipeline implementation
D.1. Using additional 2D detection and mask predcition from SurfEMB

In the best performing setup, we leverage the same 2D detector used in SurfEMB as part of the pose hypotheses generation
process. Although our spherical voting procedure can robustly aggregate information from the entire image to generate pose
hypotheses, as demonstrated by the competitive performance of 3DNEL MSIGP (No 2D detection) (Abalations in Table 1), in
practice the query embedding images for many objects are very noisy and tend to hurt performance. Empirically, we observe
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Figure 2. We compare the prediction error (using the VSD error metric) of SurfEMB and 3DNEL MSIGP across all 4123 object instances
in the YCB-V test dataset, with each instance represented as a point on this scatter plot. In the main text Figure 3(a), we show the scatter
plot across all objects. Here, we show the results per object.

that by additionally using 2D detections, we can focus the spherical voting process on regions of the observed image that is
likely relevant for the objects, and further improve performance.

For each object class in the scene, there can be multiple 2D detections. For each 2D detection, we do spherical voting
just within the detector crop and generate 80 pose hypotheses per detector crop. When there is a missing 2D detection, we
obtain the query embeddings by upsampling the input RGB image by 1.5x, and do spherical voting on the whole image. In
such cases, when we identify top positions, we additionally do non-max suppression with a filter size of 10 to spread the
top-scoring positions out. For each such top-scoring position we identify top 2 orientation, and we consider all top-scoring
positions and generate in total 30 pose hypotheses.

D.2. Implementation details and hyperparameters

We use OpenGL for rendering, use Taichi for spherical voting, and use JAX for 3DNEL evaluation. We refer the readers
to the attached Python source code for a complete implementation of our pipeline.

As we describe in the main text, we pick hyperparameters by visually inspecting detection results on a small number of
real training images that are outside the test set.

We select nk = 8 keypoints from the surface of each object class, and use y = (−350.0,−210.0, 530.0), Lx = 129, Ly =
87, Lz = 168 and d = 5.0 to make the voxel grids large enough to cover all the keypoints that can be present in the camera
frame. Here the units for the values in y and d are mm.

We use r = 5.0 in evaluating 3DNEL for all our experiments. When identifying points in the rendered point cloud C̃
(organized as an H ×W × 3 image) that is within distance r from a point (i, j) in the observed point cloud C, to further
speed up 3DNEL evaluation, we only look at the points from the patch of size (10, 10) centered at (i, j).

In Figure 3 we include additional visualizations of SurfEMB and 3DNEL MSIGP predictions on YCB-V test images.

E. Additional robustness results
In Figure 2 we include additional robustness results.

F. Additional visualizations of SurfEMB and 3DNEL MSIGP predictions on YCB-V test images



Figure 3. Additional visualizations of SurfEMB and 3DNEL MSIGP predictions on YCB-V test images
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