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In this document, we describe more details about the
datasets and the settings of hyper-parameters used for eval-
uation in Sec. A. Additionally, we summarize the overall
pipeline of the proposed DR-Tune framework in Sec. B,
and provide more analysis, semantic segmentation results
as well as quantitative results in Sec. C, Sec. D and Sec. E,
respectively. Finally, we discuss the limitations in Sec. F.

A. Details on Datasets and Hyper-parameters.
In Sec. 4 of the main body, we briefly summarize the

datasets used for evaluation, including ImageNet20 [4, 10],
CIFAR10 & 100 [13], DTD [3], Caltech101 [5], Stanford
Cars [12], Oxford-IIIT Pets [21], Oxford 102 Flowers [19],
FGVC Aircraft [17], SVHN [18] and Sun397 [24]. As a
supplement, we describe more details in this section.

ImageNet20 is a subset of the large-scale ImageNet
dataset [4], which contains 26,348 images from 20 cate-
gories. It is collected by combining an easy-to-classify
dataset Imagenette and a hard-to-classify dataset Image-
woof [10]. On this dataset, 18,494 images are used for train-
ing and the rest 7,854 images are utilized for evaluation.

CIFAR10 & 100 [13] are two widely used datasets con-
taining natural objects from 10 and 100 categories, respec-
tively. They are both divided into a subset of 50,000 images
for training and a subset of 10,000 images for evaluation.

Describable Textures Dataset (DTD) [3] is a texture
dataset, consisting of 5,640 images organized according to a
list of 47 categories inspired from human perception. 3,760
images are used for training and the remaining 1,880 images
are adopted for evaluation.

The Caltech101 dataset [5] includes 9,146 images from
101 distinct categories, each of which contains 40 to 800
images. We use 3,060 images and 6,084 images for training
and evaluation, respectively.

Stanford Cars [12] is a fine-grained dataset, which con-
tains 16,185 images of 196 different types of cars. This
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Algorithm 1: The overall pipeline of DR-Tune.
Input: The pretrained encoder fθp , the size of the

memory bank K and the batch size B.
Output: The fine-tuned downstream encoder fθd

and the classification head gϕd .
1 Initialization: Set θd := θp, randomly initialize

ϕd, and fill the memory banks Mp and Md with
the pretrained features.

2 while not converge do
3 Sample a mini-batch {xd

i , yi}Bi=1.
4 for i ∈ {1, · · · , B} do
5 Extract the pretrained and downstream

features for xd
i as follows:

zp
i = fθp(xd

i ), z
d
i = fθd(xd

i ).
6 end
7 Calculate the rotation matrix R via SVD [22].
8 Compute the class-level translations as below:
9 for c = 1 to C do

10 Calculate µp
c based on Mp by Eq. (8).

11 Calculate µd
c based on Md by Eqs. (9)-(10).

12 Compute the c-th translation vector as below
13 δc = µd

c − µp
c .

14 end
15 Calibrate the memory bank Mp via Eq. (12).
16 Update θd and ϕd by optimizing Eq. (14).
17 Update Mp/Md by zp

i /zd
i , respectively.

18 end

dataset is split into a set of 8,144 images for training and a
set of 8,041 images for evaluation.

Oxford-IIIT Pets [21] consists of the images captured
from 37 kinds of pets, of which each class roughly includes
200 images. This dataset exhibits large variations in scale,
pose and lighting. We use 3,680 images for training and the
rest 3,369 images for evaluation.



Hyper-parameter ImageNet20 CIFAR10 CIFAR100 DTD Caltech101 Cars Pets Flowers Aircraft

Epochs 100 200 100
lr schedule linear decay cosine decay
lr for the encoder 0.01 0.01 0.01 0.01 0.1 0.1 0.01 0.01 0.1
lr for the head 0.33 0.33 0.33 0.33 0.1 0.1 0.17 0.13 0.1
The size K of memory banks 2048 2048 2048 2048 2048 2304 1024 768 2048
The batch size B 64
Weight decay factor 10−4

Momentum factor 0.9

Table A: Details about the hyper-parameters used for comparison with the fine-tuning methods based on the self-supervised
pretrained model, corresponding to Table 1 of the main body. ‘lr’ is the abbreviation of ‘learning rate’.

Hyper-parameter CIFAR100† Caltech101† DTD† Flowers† Pets† SVHN Sun397

Epochs 100 300 100
lr schedule cosine decay
lr for the encoder 0.01 0.01 0.01 0.01 0.01 0.01 0.01
lr for the head 0.17 0.02 0.1 0.33 0.1 0.1 0.1
The size K of memory banks 512 128 32 2048 256 128 2048
The batch size B 32
Weight decay factor 10−4 10−3 10−3 10−4 10−4 10−3 10−4

Momentum factor 0.9

Table B: Details about the hyper-parameters used for comparison with the fine-tuning methods based on the supervised
pretrained model, corresponding to Table 2 of the main body. ‘lr’ is the abbreviation of ‘learning rate’. ‘†’ refers to the
training/test split setting as in [26].

Oxford 102 Flowers [19] contains 7,370 flower images
from 102 different categories. 6,552 images are used for
training and 818 images for evaluation.

The FGVC Aircraft [17] is a fine-grained dataset, which
contains 10,000 images from 100 different types of aircraft
models. We split this dataset into a subset of 6,667 images
for training and the remaining 3,333 images for evaluation.

SVHN is obtained from house numbers in Google Street
View images, including 73,257 training images and 26,032
test images of size 32x32 from 10 classes. By following the
training/test split setting as in [26], we adopt 1,000 images
for training and 26,032 images for evaluation.

Sun397 [24] is a scene understanding benchmark with
76,128 training images and 21,750 test images of 397 cat-
egories. Following the training/test split setting as in [26],
we adopt 1,000 images for training and 21,750 images for
evaluation.

Settings of hyper-parameters. As depicted in Sec. 4.3
of the main body, we compare DR-Tune with the state-of-
the-art under two different settings, i.e. the one based on the
self-supervised pretrained model and the other based on the
supervised pretrained model. The corresponding settings of
hyper-parameters are summarized in Table. A and Table. B,
respectively.

B. Overall Pipeline of DR-Tune

In Sec. 3 of the main body, we elaborate the technical de-
tails on the main components of Dr-Tune. We additionally
summarize the overall pipeline of DR-Tune in Algorithm 1.

C. More Analysis on DR-Tune

In this section, we conduct a more detailed study on how
DR-Tune contributes to the performance gain by analyzing
the encoder as well as the classification head on the CIFAR-
10 benchmark. We also analyze some detailed designs in
the SC module and compare DR-Tune with knowledge dis-
tillation (KD). Furthermore, we report the runtime cost and
standard errors.

On the classification head. In this case, we take a coun-
terpart, which is composed of a frozen downstream encoder
fine-tuned by CE-tuning and a classification head randomly
initialized. As shown in Fig. A (a) and (b), the classifica-
tion head is trained by the standard Cross-Entropy loss (i.e.
LCE) and the one used in DR-Tune (i.e. LCE + λ · RDR),
respectively; and we can observe that the top-1 accuracy
is improved from 96.52% to 96.72%, indicating that RDR

leads to a better classification head.
On the encoder. We compare two models that are de-

picted in Fig. A (a) and (c), both of which have a frozen
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Figure A: Illustration of different learning strategies: (a) The baseline CE-Tuning; (b) Training the classification head by
optimizing LCE + λ · RDR; (c) Applying the downstream encoder generated by DR-Tune; (d) Combining the settings in (b)
and (c).

Operation Imagenet20 CIFAR10 Pets

CLR 95.82 97.75 90.19
SA 95.77 97.79 90.24
GR (w/o SA) 95.85 97.82 89.56
GR (Ours) 96.03 98.03 90.57

Table C: Top-1 accuracies (%) of different operations in the
SC module.

downstream encoder and a randomly initialized classifica-
tion head and are trained by LCE. Their difference lies in
that the downstream encoder is fine-tuned by CE-tuning or
by DR-Tune, and this change improves the top-1 accuracy
from 96.52% to 97.86%, showing that DR-Tune facilitates
the training of a stronger encoder.

As shown in Fig. A (d), when we combine the settings in
Fig. A (b) and (c), the improved encoder and classification
head finally reach the top-1 accuracy of 97.98%, highlight-
ing the effectiveness of DR-Tune.

On the SC module. Global rotation (GR) is performed
in the SC module to alleviate the semantic drift. We explore
some different designs for this. (1) Rotation is performed
around the category center of each class, i.e. class-level ro-
tation (CLR). (2) Replace the rotation operation by aligning
the L2-norm between pretrained and downstream features,
i.e. scale alignment (SA). As shown in Table C, CLR does

Method Reference Teacher Caltech101 DTD

CE-tuning - - 93.38 68.62

KD [23] NeurIPS’14
ResNet-50† 94.46 72.66
ResNet-101† 93.68 74.42
ResNet-101∗ 95.04 76.86

RKD [20] CVPR’19 ResNet-50† 93.66 69.10
MLD [11] CVPR’23 ResNet-50† 94.90 72.82
DR-Tune Ours - 95.10 77.97

Table D: Top-1 accuracies (%) of KD and DR-Tune with
ResNet-50 as student network. †: pretrained by InfoMin; ∗:
supervised pretraining.

not lead to a gain, but takes C − 1 times more operations
than GR (C: number of classes). We thus adopt GR in im-
plementation. The performance of SA is not as good as GR
in most cases, but using SA with GR can boost the perfor-
mance, indicating that using both rotation and scale align-
ment is a better option.

Comparison to knowledge distillation. The Knowl-
edge distillation (KD) based methods utilize a frozen pre-
trained teacher network to guide the student network, which
has a similar framework with DR-Tune. We thus com-
pare DR-Tune to some representative KD-based methods:
1) logit distillation including KD [9] and MLD [11] and
2) feature distillation i.e. RKD [20]. Despite sharing the



Method
Train Test

Latency↓
(ms)

Memory↓
(GB)

Latency↓
(ms)

Memory↓
(GB)

Accuracy↑
(%)

CE-tuning 73.55 7.64 66.68 4.22 87.76
Core-tuning [64] 151.92 22.22 67.04 4.22 90.47
DR-Tune (Ours) 167.50 8.41 66.49 4.22 91.35

Table E: Comparison of runtime cost and accuracy.

(a) w/o. Semantic Calibration (b) Global Rotation (c) Class-Level Translation (d) w. Semantic Calibration

Figure B: t-SNE [23] visualization of the pretrained and downstream features on CIFAR10 from the first 6 classes. Different
colors indicate different classes, and points with low/high brightness denote the pretrained/downstream features, respectively.

same spirit of using pretrained models as regularizers, the
KD-based methods ignore the semantic drift issue and im-
pose constraints on the whole downstream model instead
of the task head, which may degrade the performance. As
an empirical study, Table D shows that all the KD-based
methods boost the accuracy of the baseline CE-tuning, but
perform worse than DR-Tune when using the same teacher
ResNet-50 pretrained by InfoMin. We then evaluate KD us-
ing different teachers with various backbones and pretrain-
ing schemes. As displayed, larger teacher models deliver
further improvements to KD, but the results are still not as
good as those of DR-Tune.

On the runtime cost. We report the latency and mem-
ory for CE-tuning, Core-tuning and DR-Tune, evaluated us-
ing the same NVIDIA V100 GPU with a batch size of 64,
based on ResNet-50 pretrained by MoCo-v2. As in Table E,
DR-Tune has relatively higher training latency compared to
CE-tuning, due to extra computation in DR and SC. Core-
tuning suffers much more memory usage, as it employs ex-
tra parameters and the feature mixture strategy. However,
DR-Tune takes a similar cost to CE-tuning in testing, since
DR and SC are not used in this phase. Besides, DR-tune de-
livers remarkably higher accuracies, thus reaching a better
balance between efficiency and accuracy for deployment.

On the standard errors. In Table 1 and Table 2 of the
main body, we report the mean results after repeating the
experiments for three times with different random seeds on
each dataset, omitting the standard errors for succinctness.

In this supplement, we provide the standard errors to val-
idate the robustness. Note that the counterparts including
Linear probing, Adapter, Bias, VPT and SSF in Table 2
do NOT report the standard errors. Therefore, we only re-
port the standard errors of DR-Tune and the re-implemented
baseline Core-tuning. The results are summarized in Table
F and Table G, showing that our method steadily reaches
moderately small standard errors on different datasets and
settings.

D. Results on Semantic Segmentation

In this section, we evaluate the generalizability of DR-
Tune on the semantic segmentation task beyond classifica-
tion.

Following the same setting as [28] does, we evaluate DR-
Tune on semantic segmentation. Since only CE-tuning and
Core-tuning report the results on this task among the coun-
terparts in Table 1, we take them for comparison. As Ta-
ble H displays, DR-Tune clearly outperforms them, show-
ing its generalizability beyond classification.



Method ImageNet20 CIFAR10 CIFAR100 DTD Caltech101

CE-tuning 88.28±0.47 94.70±0.39 80.27±0.60 71.68±0.53 91.87±0.18
L2SP [25] 88.49±0.40 95.14±0.22 81.43±0.22 72.18±0.61 91.98±0.07
DELTA [15] 88.35±0.41 94.76±0.05 80.39±0.41 72.23±0.23 92.19±0.45
M&M [27] 88.53±0.21 95.02±0.07 80.58±0.19 72.43±0.43 92.91±0.08
BSS [2] 88.34±0.62 94.84±0.21 80.40±0.30 72.22±0.17 91.95±0.12
RIFLE [14] 89.06±0.28 94.71±0.13 80.36±0.07 72.45±0.30 91.94±0.23
SCL [7] 89.29±0.07 95.33±0.09 81.49±0.27 72.73±0.31 92.84±0.03
Bi-tuning [29] 89.06±0.08 95.12±0.15 81.42±0.01 73.53±0.37 92.83±0.06
Core-tuning [28] 92.73±0.17 97.31±0.10 84.13±0.27 75.37±0.37 93.46±0.06
SSF* [16] 94.72±0.07 95.87±0.10 79.57±0.02 75.39±0.66 90.40±0.17
DR-Tune (Ours) 96.03±0.11 98.03±0.04 85.47±0.08 76.65±0.07 95.77±0.12

Method Cars Pets Flowers Aircraft Avg.

CE-tuning 88.61±0.43 89.05±0.01 98.49±0.06 86.87±0.18 87.76
L2SP [25] 89.00±0.23 89.43±0.27 98.66±0.20 86.55±0.30 88.10
DELTA [15] 88.73±0.05 89.54±0.48 98.65±0.17 87.05±0.37 87.99
M&M [27] 88.90±0.70 89.60±0.09 98.57±0.15 87.45±0.28 88.22
BSS [2] 88.50±0.02 89.50±0.42 98.57±0.15 87.18±0.71 87.94
RIFLE [14] 89.72±0.11 90.05±0.26 98.70±0.06 87.60±0.50 88.29
SCL [7] 89.37±0.13 89.71±0.20 98.65±0.10 87.44±0.31 88.54
Bi-tuning [29] 89.41±0.28 89.90±0.06 98.57±0.10 87.39±0.01 88.58
Core-tuning [28] 90.17±0.03 92.36±0.14 99.18±0.15 89.48±0.17 90.47
SSF* [16] 62.22±0.21 84.89±0.17 92.15±0.55 62.38±0.55 81.95
DR-Tune (Ours) 90.60±0.15 90.57±0.09 99.27±0.10 89.80±0.09 91.35

Table F: Comparison of the top-1 accuracies (%) as well as the standard errors by using various fine-tuning methods based
on the self-supervised pretrained model, i.e. ResNet-50 pretrained by MoCo-v2 on ImageNet. ‘*’ indicates that the method
is re-implemented. The best results are in bold.

Method CIFAR100† Caltech101† DTD† Flowers† Pets† SVHN Sun397 Avg.

Core-tuning [28] 66.3±0.55 89.7±0.07 70.9±0.03 99.0±0.05 92.3±0.16 76.4±0.08 52.5±0.85 78.16
DR-Tune (Ours) 81.1±0.34 92.8±0.19 71.4±0.41 99.3±0.02 92.4±0.21 92.0±0.10 54.5±0.03 83.36

Table G: Comparison of the top-1 accuracies (%) as well as the standard errors by using various fine-tuning methods based
on the supervised pretrained model, i.e. ViT-B pretrained on ImageNet. ‘*’ indicates that the method is re-implemented. ‘†’
refers to the training/test split setting as in [26]. The best results are in bold.

Method MPA ↑ FWIoU ↑ MIoU ↑

CE-tuning 87.31 90.26 78.42
Core-tuning [64] 88.76 90.75 79.62
DR-Tune (Ours) 89.90 90.81 79.93

Table H: Results (%) on PASCAL VOC for semantic seg-
mentation, using DeepLab-V3 [1] with ResNet-50 pre-
trained by MoCo-v2.

E. Qualitative Results
Visualization of the SC process. We provide visualiza-

tion results on CIFAR10 to demonstrate the effectiveness of
the transformations used in the SC module. As displayed in
Fig. B, the pretrained feature distribution (low brightness)

and the downstream counterpart (high brightness) clearly
exhibit a semantic drift. Global rotation mitigates the mis-
alignment of the overall shape as well as the overall center.
Class-level translations align the centers for each class, fur-
ther alleviating the semantic drift. We also add quantitative
evaluations by adopting the Maximum Mean Discrepancy
(MMD) [6] metric in Table I, showing that the distribution
distance remarkably decreases.

Method w/o. SC w. SC (Ours)

MMD(Zp,Zd) 1.478 0.028

Table I: Comparison in terms of MMD on CIFAR10.



Figure C: t-SNE visualization of distributions of the pre-
trained (left) and downstream (right) features on CIFAR10.

Visualization of the feature distribution. In Sec 3.4 of
the main body, due to the lack of supervision in the down-
stream task, the inter-class distribution of the pretrained fea-
ture is less discriminative than the downstream one. To
make it more convincing, we visualize the distributions
of the pretrained and downstream features on CIFAR10 in
Fig. C, where the downstream ones are more discriminative.

Visualization of the training process. In Fig. D, we
use t-SNE [23] to visualize the features of the training and
testing sets from CIFAR10 [13] during training. We also
use the S_Dbw score [8] to evaluate the inter-class den-
sity and intra-class variance of the learned features where
a lower S_Dbw score is better. DR-Tune utilizes the prior
knowledge that accelerates the convergence, and therefore a
faster convergence process is observed compared to vanilla
fine-tuning (i.e. CE-tuning), which only uses the pre-trained
model for initialization. Besides, after training, the features
obtained by DR-Tune have a lower S_Dbw score, indicat-
ing a more compact intra-class distribution and a more dis-
persed inter-class distribution.

F. Limitations

As discussed in Sec. C, DR-Tune suffers from a high
training latency, due to computation of rotations by SVD
in SC, which can be further improved by more efficient so-
lutions. Besides, SC aligns the downstream and pretrained
features by a global feature after average pooling for clas-
sification, ignoring spatial misalignment, which is crucial
to spatio-sensitive tasks, e.g. object detection ans semantic
segmentation, leaving room for gains.
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Figure D: t-SNE visualizattion and S_Dbw scores of the learned features on the CIFAR10 dataset: (a) on the training samples
and (b) on the testing samples. CE-tuning refers to vanilla fine-tuning.
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