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This document contains additional material for the main
submission. Sec. A provides further implementation details
for our method. Sec. B details the weakness of the one-to-
one design [3] by a visualization example. Sec. C elaborates
on the limitation of the proposed F&F attacker by deploying
it to attack FairMOT [7], where we also provide suggestions
for enhancing the F&F attacker. Sec. D contains further
qualitative analysis of our method.

A. Further Implementation Details
We deploy the proposed F&F attacker on four multi-

object trackers in our experiments, including ByteTrack [6],
SORT [1], CenterTrack [8], and FairMOT [7]. We adopt
the official implementations and tracking configurations for
ByteTrack1, CenterTrack2, and FairMOT3. As for SORT,
we use the implementation from ByteTrack, which is en-
abled by the YOLOX [2] detector. Detailed tracking
configurations are summarized in Table A1, where τNMS
is the NMS threshold, τtrack is the IoU threshold below
which an association is rejected, P is the probation pe-
riod. CenterNet-enabled trackers, like CenterTrack and
FairMOT, use the max pooling operation as an alternative
to classic NMS operations. Besides, CenterTrack and Fair-
MOT do not use explicit IoU thresholds to gate associations.

Table A1: Detailed tracking configurations.

Tracker Detector NMS τNMS τtrack P

ByteTrack YOLOX classic NMS 0.7 0.1 1
SORT YOLOX classic NMS 0.7 0.3 1

CenterTrack CenterNet max pooling - - 0
FairMOT CenterNet max pooling - - 1

A.1. Detailed Design for Attacking CenterNet-
Enabled Trackers

Compared to YOLOX-enabled trackers (e.g., SORT [1],
ByteTrack [6]), trackers enabled by CenterNet [9], like

1https://github.com/ifzhang/ByteTrack
2https://github.com/xingyizhou/CenterTrack
3https://github.com/ifzhang/FairMOT

Table A2: Experiments of attacking CenterTrack with dif-
ferent shift (κ) settings on the MOT17 dataset.

κ rfa IDSWim

0.25 0.75 57.92%
0.375 0.86 65.29%

0.5 0.92 74.38%
0.75 0.99 76.80 %
1.0 1.02 78.85 %
1.5 1.07 79.92%
2.0 1.10 74.81%
2.5 1.11 68.68%
3.0 1.11 62.72%

CenterTrack [8] and FairMOT [7], show a stronger spatial
smoothness on network predictions, especially on center
point estimations, as it is explicitly supervised by target-
size-related Gaussian kernels [5]. When deploying our
method on CenterNet-enabled trackers, each false alarm is
shifted by (κσ, κσ) away from the original detection in dif-
ferent directions, where σ is the radius of the Gaussian ker-
nel corresponding to the original detection. Please note that
this slightly differs from attacking YOLOX-enabled track-
ers (detailed in Sec.3.3.1 in the main text), where we shift
each false alarm by (κw, κh).

To better demonstrate this spatial smoothness, we list the
false alarm ratios rfa under different settings of κ in Ta-
ble A2. Formally, rfa is calculated by rfa = |D̃|/|D|, where
|D̃| is the number of false alarms obtained by feeding the
detector with the attacked image and |D| is the expected
number of false alarms. According to Table A2, when the
spacing between false alarms is not large enough, the false
alarm ratio rfa is lower than expected (i.e., rfa < 1). For ex-
periments reported in the main submission, we use κ = 0.5.

Besides, CenterTrack [8] conducts association based on
center representations rather than based on box representa-
tions. As a result, it shows less sensitivity to the size pre-
diction of the box. Therefore, no scaling is adopted when
attacking CenterTrack (i.e., s = 1).

https://github.com/ifzhang/ByteTrack
https://github.com/xingyizhou/CenterTrack
https://github.com/ifzhang/FairMOT
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Figure A1: Gaps between expected detections and actual
attack results of Hijacking.

B. Weaknesses of One-to-One Design
The Hijacking attacker [3] focuses on misleading the

Kalman filter [4] inside the tracker. When deploying it to
attack multiple targets simultaneously, each original detec-
tion box is translated in the direction opposite to the correct
velocity. The attack effectiveness of this one-to-one design
(each original box corresponds to one translated box) de-
creases as the number of targets increases.

For example, in the crowded scene highlighted in
Fig. A1, the detection set expected by the Hijacking attack
may have an extremely high density. However, due to (1)
conflicting perturbation demands from different target indi-
viduals and (2) high-density detections being suppressed by
NMS, the actual attack results differ significantly from the
expected ones. In contrast, we inject multiple false alarms
with reasonable density for each original target. Such a one-
to-many design is less affected by the above-mentioned fac-
tors.

C. Limitation on Attacking Re-Identification-
Based Trackers

Table A3: Experiments of attacking FairMOT on MOT17
dataset.

F&F attack Lemb β #iter #Fm. ϵ IDSWim

✓ 0.9 60 3 8/255 4.65%
✓ 0.5 60 3 8/255 58.25%
✓ ✓ 0.9 60 3 8/255 51.14%
✓ ✓ 0.9 60 3 12/255 58.50%

Due to the natural limitation of fooling detectors alone,
the effectiveness of the F&F attacker may degrade when at-
tacking some re-identification-based multi-object trackers.
This is primarily due to the smooth updating of appearance
embeddings inside the tracker, which results in the violation
of Eq. 5 and Eq. 6 in the main text. Taking FairMOT [7] as
an example, in the new time step t, the appearance embed-
ding of an associated trajectory is updated by

etsmooth = βet−1
smooth + (1− β)et, (1)

where β is a smoothness factor and is set to 0.9 by default,
indicating the rather low confidence on the new observa-
tion et. As shown in Table A3, by relaxing the β to 0.5,
our method achieves a reasonably good attack success rate
of 58.25%. In order to promote the attack efficiency un-
der original β settings, we suggest pushing the appearance
embeddings of false alarms towards those of original de-
tections by adding one loss item λembLemb (weighted by
λemb = 5) to the targeted loss LCenterTrack

tgt (the design for
attacking CenterTrack in the main text can be reused to at-
tack FairMOT because these two trackers share the same
build-in detector). In specific, we define the loss item as

Lemb = 1− cos(et, ẽt), (2)

where cos(·, ·) measures the cosine distance between em-
beddings, and ẽ indicates the appearance embedding of a
false alarm. This leads to the overall targeted loss of attack-
ing FairMOT being designed as

LFairMOT
tgt = LCenterTrack

tgt + λembLemb. (3)

Enabled by attacking the embedding module with the loss
item Lemb, the attack success rate reaches 51.14%. Besides,
we find that attacks on FairMOT benefit from greater ϵ.

D. Qualitative Analysis
To better illustrate how our method implicitly integrates

the association attack, qualitative results are provided in
Fig. A2.

ByteTrack [6] and SORT [1] take a probation period of
1 frame. Though they do not spawn new trajectories for
false alarms in the first attack frame, our attack has already
started to take effect. Specifically, with the original detec-
tion being erased, one of the shifted false alarms instead in-
herits the original identity, misleading trackers to get incor-
rect estimations (e.g., velocity estimations). This reduces
the probability of the original identity being correctly trans-
mitted across the attack. Therefore, our attack method im-
plicitly integrates the association attack without explicitly
accessing or forwarding the association component.

The identity switches on isolate targets (highlighted by
red triangles) validate the attack example given in Fig. 2 in
the main submission. That is, by injecting deceptive false
alarms, one of the newly spawned trajectories wins the com-
petition, handing over a wrong identity to the detection after
the attack. Besides, deceptive false alarms have a higher ef-
ficiency in attacking targets within a crowd (highlighted by
yellow triangles) because once a target steals the identity
of another target, the latter will also experience an identity
switch.

Different from ByteTrack and SORT, no probation pe-
riod is adopted by CenterTrack [8]. A new trajectory is
spawned once it is detected. Besides, CenterTrack employs
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Figure A2: Qualitative results of our method. For each deployment, we list the detection results (i.e., intermediate products)
in the first line and the association results (i.e., final outputs of trackers) in the second line. Tracking identities are coded
by color. The red triangles show examples of attacking isolated targets and the yellow triangles show examples of attacking
targets within a crowd. For more details please refer to the document.

an aggressive trajectory update strategy, placing 100% con-
fidence in the latest observations. This makes CenterTrack
more vulnerable to our attacks. By attacking only 1 frame,
our method achieves an identity switch rate of about 75%.
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